1
|
Tripathi P, Ansari MA, Gandhi TK, Albalwy F, Mehrotra R, Mishra D. Computational ensemble expert system classification for the recognition of bruxism using physiological signals. Heliyon 2024; 10:e25958. [PMID: 38390100 PMCID: PMC10881886 DOI: 10.1016/j.heliyon.2024.e25958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
This study aimed to develop an automatic diagnostic scheme for bruxism, a sleep-related disorder characterized by teeth grinding and clenching. The aim was to improve on existing methods, which have been proven to be inefficient and challenging. We utilized a novel hybrid machine learning classifier, facilitated by the Weka tool, to diagnose bruxism from biological signals. The study processed and examined these biological signals by calculating the power spectral density. Data were categorized into normal or bruxism categories based on the EEG channel (C4-A1), and the sleeping phases were classified into wake (w) and rapid eye movement (REM) stages using the ECG channel (ECG1-ECG2). The classification resulted in a maximum specificity of 93% and an accuracy of 95% for the EEG-based diagnosis. The ECG-based classification yielded a supreme specificity of 87% and an accuracy of 96%. Furthermore, combining these phases using the EMG channel (EMG1-EMG2) achieved the highest specificity of 95% and accuracy of 98%. The ensemble Weka tool combined all three physiological signals EMG, ECG, and EEG, to classify the sleep stages and subjects. This integration increased the specificity and accuracy to 97% and 99%, respectively. This indicates that a more precise bruxism diagnosis can be obtained by including all three biological signals. The proposed method significantly improves bruxism diagnosis accuracy, potentially enhancing automatic home monitoring systems for this disorder. Future studies may expand this work by applying it to patients for practical use.
Collapse
Affiliation(s)
- Pragati Tripathi
- Department of Electrical Engineering, Gautam Buddha University, Greater Noida, India
| | - M A Ansari
- Department of Electrical Engineering, Gautam Buddha University, Greater Noida, India
| | - Tapan Kumar Gandhi
- Department of Electrical Engineering, Indian Institute of Technology Delhi, India
| | - Faisal Albalwy
- Department of Computer Science, College of Computer Science and Engineering, Taibah University, Madinah, Saudi Arabia
- Division of Informatics, Imaging and Data Sciences, Stopford Building, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Rajat Mehrotra
- Department of Examination & Analysis, Amity University, Noida, India
| | - Deepak Mishra
- Department of Computer Science, College of Vocational Studies, University of Delhi, India
| |
Collapse
|
2
|
Zhao R, Arabameri A, Santosh M. Land subsidence susceptibility mapping: a new approach to improve decision stump classification (DSC) performance and combine it with four machine learning algorithms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:15443-15466. [PMID: 38300491 DOI: 10.1007/s11356-024-32075-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 01/15/2024] [Indexed: 02/02/2024]
Abstract
Land subsidence is a worldwide threat. In arid and semiarid lands, groundwater depletion is the main factor that induce the subsidence resulting in environmental damages and socio-economic issues. To foresee and prevent the impact of land subsidence, it is necessary to develop accurate maps of the magnitude and evolution of the subsidences. Land subsidence susceptibility maps (LSSMs) provide one of the effective tools to manage vulnerable areas and to reduce or prevent land subsidence. In this study, we used a new approach to improve decision stump classification (DSC) performance and combine it with machine learning algorithms (MLAs) of naïve Bayes tree (NBTree), J48 decision tree, alternating decision tree (ADTree), logistic model tree (LMT), and support vector machine (SVM) in land subsidence susceptibility mapping (LSSSM). We employ data from 94 subsidence locations, among which 70% were used to train learning hybrid models and the other 30% were used for validation. In addition, the models' performance was assessed by ROC-AUC, accuracy, sensitivity, specificity, odd ratio, root-mean-square error (RMSE), kappa, frequency ratio, and F-score techniques. A comparison of the results obtained from the different models reveals that the new DSC-ADTree hybrid algorithm has the highest accuracy (AUC = 0.983) in preparing LSSSMs as compared to other learning models such as DSC-J48 (AUC = 0.976), DSC-NBTree (AUC = 0.959), DSC-LMT (AUC = 0.948), DSC-SVM (AUC = 0.939), and DSC (AUC = 0.911). The LSSSMs generated through the novel scientific approach presented in our study provide reliable tools for managing and reducing the risk of land subsidence.
Collapse
Affiliation(s)
- Rui Zhao
- School of Energy and Power Engineering, Xihua University, Chengdu, 610039, China
- Key Laboratory of Fluid and Power Machinery, Ministry of Education, Xihua University, Chengdu, 610039, China
| | - Alireza Arabameri
- Department of Geomorphology, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran, 9821, Iran.
| | - M Santosh
- School of Earth Sciences and Resources, China University of Geosciences, Beijing, China
- Department of Earth Sciences, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
3
|
Kułacz Ł, Kliks A. Federated Learning-Based Spectrum Occupancy Detection. SENSORS (BASEL, SWITZERLAND) 2023; 23:6436. [PMID: 37514730 PMCID: PMC10386618 DOI: 10.3390/s23146436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023]
Abstract
Dynamic access to the spectrum is essential for radiocommunication and its limited spectrum resources. The key element of dynamic spectrum access systems is most often effective spectrum occupancy detection. In many cases, machine learning algorithms improve this detection's effectiveness. Given the recent trend of using federated learning, we present a federated learning algorithm for distributed spectrum occupancy detection. This idea improves overall spectrum-detection effectiveness, simultaneously keeping a low amount of data that needs to be exchanged between sensors. The proposed solution achieves a higher accuracy score than separate and autonomous models used without federated learning. Additionally, the proposed solution shows some sort of resistance to faulty sensors encountered in the system. The results of the work presented in the article are based on actual signal samples collected in the laboratory. The proposed algorithm is effective (in terms of spectrum occupancy detection and amount of exchanged data), especially in the context of a set of sensors in which there are faulty sensors.
Collapse
Affiliation(s)
- Łukasz Kułacz
- Institute of Radiocommunications, Poznan University of Technology, 60-965 Poznan, Poland
| | - Adrian Kliks
- Institute of Radiocommunications, Poznan University of Technology, 60-965 Poznan, Poland
- Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology, 971 87 Lulea, Sweden
| |
Collapse
|
4
|
Konar S, Auluck N, Ganesan R, Goyal AK, Kaur T, Sahi M, Samra T, Thingnam SKS, Puri GD. A non-linear time series based artificial intelligence model to predict outcome in cardiac surgery. HEALTH AND TECHNOLOGY 2022. [DOI: 10.1007/s12553-022-00706-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
A Machine Learning Approach to Predict the Probability of Brain Metastasis in Renal Cell Carcinoma Patients. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12126174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Patients with brain metastasis (BM) have a better prognosis when it is detected early. However, current guidelines recommend brain imaging only when there are central nervous system symptoms or abnormal experimental values. Therefore, metastases are discovered later in asymptomatic patients. As a result, there is a need for an algorithm that predicts the possibility of BM using clinical data and machine learning (ML). Data from 3153 patients with renal cell carcinoma (RCC) were collected from the 11-institution Korean Renal Cancer Study group (KRoCS) database. To predict BM, clinical information of 1282 patients was extracted from the database and used to compare the performance of six ML algorithms. The final model selection was based on the area under the receiver operating characteristic (AUROC) curve. After optimizing the hyperparameters for each model, the adaptive boosting (AdaBoost) model outperformed the others, with an AUROC of 0.716. We developed an algorithm to predict the probability of BM in patients with RCC. Using the developed predictive model, it is possible to avoid detection delays by performing computed tomography scans on potentially asymptomatic patients.
Collapse
|
6
|
Vadapalli S, Abdelhalim H, Zeeshan S, Ahmed Z. Artificial intelligence and machine learning approaches using gene expression and variant data for personalized medicine. Brief Bioinform 2022; 23:6590150. [PMID: 35595537 DOI: 10.1093/bib/bbac191] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/02/2022] [Accepted: 04/26/2022] [Indexed: 12/16/2022] Open
Abstract
Precision medicine uses genetic, environmental and lifestyle factors to more accurately diagnose and treat disease in specific groups of patients, and it is considered one of the most promising medical efforts of our time. The use of genetics is arguably the most data-rich and complex components of precision medicine. The grand challenge today is the successful assimilation of genetics into precision medicine that translates across different ancestries, diverse diseases and other distinct populations, which will require clever use of artificial intelligence (AI) and machine learning (ML) methods. Our goal here was to review and compare scientific objectives, methodologies, datasets, data sources, ethics and gaps of AI/ML approaches used in genomics and precision medicine. We selected high-quality literature published within the last 5 years that were indexed and available through PubMed Central. Our scope was narrowed to articles that reported application of AI/ML algorithms for statistical and predictive analyses using whole genome and/or whole exome sequencing for gene variants, and RNA-seq and microarrays for gene expression. We did not limit our search to specific diseases or data sources. Based on the scope of our review and comparative analysis criteria, we identified 32 different AI/ML approaches applied in variable genomics studies and report widely adapted AI/ML algorithms for predictive diagnostics across several diseases.
Collapse
Affiliation(s)
- Sreya Vadapalli
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson St, New Brunswick, NJ, USA
| | - Habiba Abdelhalim
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson St, New Brunswick, NJ, USA
| | - Saman Zeeshan
- Rutgers Cancer Institute of New Jersey, Rutgers University, 195 Little Albany St, New Brunswick, NJ, USA
| | - Zeeshan Ahmed
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson St, New Brunswick, NJ, USA.,Department of Medicine, Robert Wood Johnson Medical School, Rutgers Biomedical and Health Sciences, 125 Paterson St, New Brunswick, NJ, USA
| |
Collapse
|
7
|
A Seed-Guided Latent Dirichlet Allocation Approach to Predict the Personality of Online Users Using the PEN Model. ALGORITHMS 2022. [DOI: 10.3390/a15030087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
There is a growing interest in topic modeling to decipher the valuable information embedded in natural texts. However, there are no studies training an unsupervised model to automatically categorize the social networks (SN) messages according to personality traits. Most of the existing literature relied on the Big 5 framework and psychological reports to recognize the personality of users. Furthermore, collecting datasets for other personality themes is an inherent problem that requires unprecedented time and human efforts, and it is bounded with privacy constraints. Alternatively, this study hypothesized that a small set of seed words is enough to decipher the psycholinguistics states encoded in texts, and the auxiliary knowledge could synergize the unsupervised model to categorize the messages according to human traits. Therefore, this study devised a dataless model called Seed-guided Latent Dirichlet Allocation (SLDA) to categorize the SN messages according to the PEN model that comprised Psychoticism, Extraversion, and Neuroticism traits. The intrinsic evaluations were conducted to determine the performance and disclose the nature of texts generated by SLDA, especially in the context of Psychoticism. The extrinsic evaluations were conducted using several machine learning classifiers to posit how well the topic model has identified latent semantic structure that persists over time in the training documents. The findings have shown that SLDA outperformed other models by attaining a coherence score up to 0.78, whereas the machine learning classifiers can achieve precision up to 0.993. We also will be shared the corpus generated by SLDA for further empirical studies.
Collapse
|
8
|
Qin C, Hu W, Wang X, Ma X. Application of Artificial Intelligence in Diagnosis of Craniopharyngioma. Front Neurol 2022; 12:752119. [PMID: 35069406 PMCID: PMC8770750 DOI: 10.3389/fneur.2021.752119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/12/2021] [Indexed: 12/24/2022] Open
Abstract
Craniopharyngioma is a congenital brain tumor with clinical characteristics of hypothalamic-pituitary dysfunction, increased intracranial pressure, and visual field disorder, among other injuries. Its clinical diagnosis mainly depends on radiological examinations (such as Computed Tomography, Magnetic Resonance Imaging). However, assessing numerous radiological images manually is a challenging task, and the experience of doctors has a great influence on the diagnosis result. The development of artificial intelligence has brought about a great transformation in the clinical diagnosis of craniopharyngioma. This study reviewed the application of artificial intelligence technology in the clinical diagnosis of craniopharyngioma from the aspects of differential classification, prediction of tissue invasion and gene mutation, prognosis prediction, and so on. Based on the reviews, the technical route of intelligent diagnosis based on the traditional machine learning model and deep learning model were further proposed. Additionally, in terms of the limitations and possibilities of the development of artificial intelligence in craniopharyngioma diagnosis, this study discussed the attentions required in future research, including few-shot learning, imbalanced data set, semi-supervised models, and multi-omics fusion.
Collapse
Affiliation(s)
- Caijie Qin
- Institute of Information Engineering, Sanming University, Sanming, China
| | - Wenxing Hu
- University of New South Wales, Sydney, NSW, Australia
| | - Xinsheng Wang
- School of Information Science and Engineering, Harbin Institute of Technology at Weihai, Weihai, China
| | - Xibo Ma
- CBSR & NLPR, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Development and external validation of a stability machine learning model to identify wake-up stroke onset time from MRI. Eur Radiol 2022; 32:3661-3669. [PMID: 35037969 DOI: 10.1007/s00330-021-08493-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/11/2021] [Accepted: 11/28/2021] [Indexed: 11/04/2022]
Abstract
OBJECTIVES To develop and externally validate a machine learning (ML) model based on diffusion-weighted imaging (DWI) and fluid-attenuated inversion recovery (FLAIR) to identify the onset time of wake-up stroke from MRI. METHODS DWI and FLAIR images of stroke patients within 24 h of clear symptom onset in our hospital (dataset 1, n = 410) and another hospital (dataset 2, n = 177) were included. Seven ML models based on dataset 1 were developed to estimate the stroke onset time for binary classification (≤ 4.5 h or > 4.5 h): Random Forest (RF), support vector machine with kernel (svmLinear) or radial basis function kernel (svmRadial), Bayesian (Bayes), K-nearest neighbor (KNN), adaptive boosting (AdaBoost), and neural network (NNET). ROC analysis and RSD were performed to evaluate the performance and stability of the ML models, respectively, and dataset 2 was externally validated to evaluate the model generalization ability using ROC analysis. RESULTS svmRadial achieved the best performance with the highest AUC and accuracy (AUC: 0.896, accuracy: 0.878), and was the most stable (RSD% of AUC: 0.08, RSD% of accuracy: 0.06). The svmRadial model was then selected as the final model, and the AUC of the svmRadial model for predicting the onset time external validation was 0.895, with 0.825 accuracy. CONCLUSIONS The svmRadial model using DWI + FLAIR is the most stable and generalizable for identifying the onset time of wake-up stroke patients within 4.5 h of symptom onset. KEY POINTS • Machining learning model helps clinicians to identify wake-up stroke patients within 4.5 h of symptom onset. • A prospective study showed that svmRadial model based on DWI + FLAIR was the most stable in predicting the stroke onset time. • External validation showed that svmRadial model has good generalization ability in predicting the stroke onset time.
Collapse
|
10
|
Hatmal MM, Alshaer W, Mahmoud IS, Al-Hatamleh MAI, Al-Ameer HJ, Abuyaman O, Zihlif M, Mohamud R, Darras M, Al Shhab M, Abu-Raideh R, Ismail H, Al-Hamadi A, Abdelhay A. Investigating the association of CD36 gene polymorphisms (rs1761667 and rs1527483) with T2DM and dyslipidemia: Statistical analysis, machine learning based prediction, and meta-analysis. PLoS One 2021; 16:e0257857. [PMID: 34648514 PMCID: PMC8516279 DOI: 10.1371/journal.pone.0257857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/11/2021] [Indexed: 12/15/2022] Open
Abstract
CD36 (cluster of differentiation 36) is a membrane protein involved in lipid metabolism and has been linked to pathological conditions associated with metabolic disorders, such as diabetes and dyslipidemia. A case-control study was conducted and included 177 patients with type-2 diabetes mellitus (T2DM) and 173 control subjects to study the involvement of CD36 gene rs1761667 (G>A) and rs1527483 (C>T) polymorphisms in the pathogenesis of T2DM and dyslipidemia among Jordanian population. Lipid profile, blood sugar, gender and age were measured and recorded. Also, genotyping analysis for both polymorphisms was performed. Following statistical analysis, 10 different neural networks and machine learning (ML) tools were used to predict subjects with diabetes or dyslipidemia. Towards further understanding of the role of CD36 protein and gene in T2DM and dyslipidemia, a protein-protein interaction network and meta-analysis were carried out. For both polymorphisms, the genotypic frequencies were not significantly different between the two groups (p > 0.05). On the other hand, some ML tools like multilayer perceptron gave high prediction accuracy (≥ 0.75) and Cohen's kappa (κ) (≥ 0.5). Interestingly, in K-star tool, the accuracy and Cohen's κ values were enhanced by including the genotyping results as inputs (0.73 and 0.46, respectively, compared to 0.67 and 0.34 without including them). This study confirmed, for the first time, that there is no association between CD36 polymorphisms and T2DM or dyslipidemia among Jordanian population. Prediction of T2DM and dyslipidemia, using these extensive ML tools and based on such input data, is a promising approach for developing diagnostic and prognostic prediction models for a wide spectrum of diseases, especially based on large medical databases.
Collapse
Affiliation(s)
- Ma’mon M. Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
- * E-mail:
| | - Walhan Alshaer
- Cell Therapy Centre, The University of Jordan, Amman, Jordan
| | - Ismail S. Mahmoud
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| | - Mohammad A. I. Al-Hatamleh
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Hamzeh J. Al-Ameer
- Department of Biology and Biotechnology, American University of Madaba, Madaba, Jordan
- Department of Pharmacology, Faculty of Medicine, The University of Jordan, Amman, Jordan
| | - Omar Abuyaman
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| | - Malek Zihlif
- Department of Pharmacology, Faculty of Medicine, The University of Jordan, Amman, Jordan
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Mais Darras
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| | - Mohammad Al Shhab
- Department of Pharmacology, Faculty of Medicine, The University of Jordan, Amman, Jordan
| | - Rand Abu-Raideh
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| | - Hilweh Ismail
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| | - Ali Al-Hamadi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| | - Ali Abdelhay
- Department of Pharmacology, Faculty of Medicine, The University of Jordan, Amman, Jordan
| |
Collapse
|
11
|
Gürel-Gökmen B, Taslak HD, Özcan O, İpar N, Tunali-Akbay T. Polycaprolactone/silk fibroin electrospun nanofibers-based lateral flow test strip for quick and facile determination of bisphenol A in breast milk. J Biomed Mater Res B Appl Biomater 2021; 109:1455-1464. [PMID: 33501724 DOI: 10.1002/jbm.b.34805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 12/13/2020] [Accepted: 01/09/2021] [Indexed: 01/06/2023]
Abstract
This study aimed to develop a sensitive lateral flow test strip for the detection of bisphenol A (BPA) in breast milk. Conventional nitrocellulose test membrane was coated with the coaxial nanofiber, consisting of the inner polycaprolactone (PCL) and the outer PCL/silk fibroin (SF) mixture, to decrease the flow rate of the breast milk in the lateral flow assay (LFA). The nanofiber was prepared by using coaxial electrospinning, and BPA antibody was immobilized physically to the nanofiber. This nanofiber was used as a test membrane in the LFA. Color changes on the test membrane were evaluated as the signal intensity of the BPA. Breast milk creates a background on surfaces due to its structural properties. This background was detected by comparing the signal intensity with the signal intensity of water. The higher signal intensity was found in water samples when compared to breast milk samples. Although the detection limit is 2 ng/ml in both coaxial PCL/SF nanofiber and nitrocellulose (NC) test membranes, the color intensity increased with the increasing BPA concentration in the coaxial PCL/SF nanofiber. As a new dimension, the coaxial PCL/SF nanofiber provided higher color intensity than the NC membrane. In conclusion, a sensitive onsite method was developed for the detection of BPA in breast milk by using new coaxial PCL/SF nanofiber as a test membrane in LFA.
Collapse
Affiliation(s)
- Begüm Gürel-Gökmen
- Faculty of Dentistry, Department of Biochemistry, Marmara University, İstanbul, Turkey
| | - Hava Dudu Taslak
- Faculty of Dentistry, Department of Biochemistry, Marmara University, İstanbul, Turkey
| | - Ozan Özcan
- Faculty of Dentistry, Department of Biochemistry, Marmara University, İstanbul, Turkey
| | - Necla İpar
- Department of Pediatrics, Koc University Hospital, İstanbul, Turkey
| | - Tuğba Tunali-Akbay
- Faculty of Dentistry, Department of Biochemistry, Marmara University, İstanbul, Turkey
| |
Collapse
|
12
|
Fraiwan L, Hassanin O, Fraiwan M, Khassawneh B, Ibnian AM, Alkhodari M. Automatic identification of respiratory diseases from stethoscopic lung sound signals using ensemble classifiers. Biocybern Biomed Eng 2021. [DOI: 10.1016/j.bbe.2020.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
A Novel Hybrid Machine Learning Classification for the Detection of Bruxism Patients Using Physiological Signals. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10217410] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bruxism is a sleep disorder in which the patient clinches and gnashes their teeth. Bruxism detection using traditional methods is time-consuming, cumbersome, and expensive. Therefore, an automatic tool to detect this disorder will alleviate the doctor workload and give valuable help to patients. In this paper, we targeted this goal and designed an automatic method to detect bruxism from the physiological signals using a novel hybrid classifier. We began with data collection. Then, we performed the analysis of the physiological signals and the estimation of the power spectral density. After that, we designed the novel hybrid classifier to enable the detection of bruxism based on these data. The classification of the subjects into “healthy” or “bruxism” from the electroencephalogram channel (C4-A1) obtained a maximum specificity of 92% and an accuracy of 94%. Besides, the classification of the sleep stages such as the wake (w) stage and rapid eye movement (REM) stage from the electrocardiogram channel (ECG1-ECG2) obtained a maximum specificity of 86% and an accuracy of 95%. The combined bruxism classification and the sleep stages classification from the electroencephalogram channel (C4-P4) obtained a maximum specificity of 90% and an accuracy of 97%. The results show that more accurate bruxism detection is achieved by exploiting the electroencephalogram signal (C4-P4). The present work can be applied for home monitoring systems for bruxism detection.
Collapse
|
14
|
Sana MK, Hussain ZM, Shah PA, Maqsood MH. Artificial intelligence in celiac disease. Comput Biol Med 2020; 125:103996. [PMID: 32979542 DOI: 10.1016/j.compbiomed.2020.103996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 12/14/2022]
Abstract
Celiac disease (CD) has been on the rise in the world and a large part of it remains undiagnosed. Novel methods are required to address the gaps in prompt detection and management. Artificial intelligence (AI) has seen an exponential surge in the last decade worldwide. With the advent of big data and powerful computational ability, we now have self-driving cars and smart devices in our daily lives. Huge databases in the form of electronic medical records and images have rendered healthcare a lucrative sector where AI can prove revolutionary. It is being used extensively to overcome the barriers in clinical workflows. From the perspective of a disease, it can be deployed in multiple steps i.e. screening tools, diagnosis, developing novel therapeutic agents, proposing management plans, and defining prognostic indicators, etc. We review the areas where it may augment physicians in the delivery of better healthcare by summarizing current literature on the use of AI in healthcare using CD as a model. We further outline major barriers to its large-scale implementations and prospects from the healthcare point of view.
Collapse
Affiliation(s)
- Muhammad Khawar Sana
- Department of Internal Medicine, King Edward Medical University, Mayo Hospital Lahore, Lahore, Punjab, 54000, Pakistan.
| | - Zeshan M Hussain
- Computer Science & Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, MA, 02139, United States.
| | - Pir Ahmad Shah
- Department of Internal Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, United States.
| | - Muhammad Haisum Maqsood
- Department of Internal Medicine, King Edward Medical University, Mayo Hospital Lahore, Lahore, Punjab, 54000, Pakistan.
| |
Collapse
|
15
|
Modulation Classification Using Compressed Sensing and Decision Tree-Support Vector Machine in Cognitive Radio System. SENSORS 2020; 20:s20051438. [PMID: 32155737 PMCID: PMC7085730 DOI: 10.3390/s20051438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 11/23/2022]
Abstract
In this paper, a blind modulation classification method based on compressed sensing using a high-order cumulant and cyclic spectrum combined with the decision tree–support vector machine classifier is proposed to solve the problem of low identification accuracy under single-feature parameters and reduce the performance requirements of the sampling system. Through calculating the fourth-order, eighth-order cumulant and cyclic spectrum feature parameters by breaking through the traditional Nyquist sampling law in the compressed sensing framework, six different cognitive radio signals are effectively classified. Moreover, the influences of symbol length and compression ratio on the classification accuracy are simulated and the classification performance is improved, which achieves the purpose of identifying more signals when fewer feature parameters are used. The results indicate that accurate and effective modulation classification can be achieved, which provides the theoretical basis and technical accumulation for the field of optical-fiber signal detection.
Collapse
|