1
|
Kumar P, Chugh P, Ali SS, Chawla W, Sushmita S, Kumar R, Raval AV, Shamim S, Bhatia A, Kumar R. Trends of Nanobiosensors in Modern Agriculture Systems. Appl Biochem Biotechnol 2025; 197:667-690. [PMID: 39136915 DOI: 10.1007/s12010-024-05039-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 01/19/2025]
Abstract
Sustainable agriculture and the provision of food for all become dependent on the availability of efficient diagnostic techniques for the prompt identification of plant diseases. Current scientific findings suggest that nanotechnology can positively affect the agrifood industry by reducing the adverse effects of agricultural practices on human health and the environment, increasing food security and productivity, and fostering social and economic justice. Nanomaterials' unique physical and chemical characteristics have made it possible to employ them as cutting-edge, effective diagnostic instruments for various plant infections and other significant disease biomarkers. By creating diagnostic instruments and methods, nanobiosensors significantly contribute to the revolution of farming. In real time, nanobiosensors can detect infections, metabolites, pesticides, nutrient levels, soil moisture, and temperature. This helps with precision farming techniques and maximises resource use. To better address agricultural concerns, we have included the most recent research on the concept, types, applications, commercial aspects, and future scope of nanobiosensors in this review.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, Punjab, India.
| | - Priya Chugh
- School of Agriculture, Graphic Era Hill University, Dehradun, 248002, Uttarakhand, India
| | - Syed Salman Ali
- Lloyd Institute of Management and Technology, Greater Noida, 201306, Uttar Pradesh, India
| | - Wineet Chawla
- School of Agriculture Sciences and Engineering, Maharaja Ranjit Singh Punjab Technical University, Bathind, 151001, Punjab, India
| | - Sushmita Sushmita
- Department of Commerce, Punjabi University, Patiala, 147002, Punjab, India
| | - Ram Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, Punjab, India
| | | | - Shamim Shamim
- IIMT College of Medical Sciences, IIMT University, Meerut, 250001, Uttar Pradesh, India
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, Punjab, India
| | - Ravinder Kumar
- School of Mechanical Engineering, Lovely Professional University, Phagwara, 144411, Punjab, India
| |
Collapse
|
2
|
Javaid A, Hameed S, Li L, Zhang Z, Zhang B, -Rahman MU. Can nanotechnology and genomics innovations trigger agricultural revolution and sustainable development? Funct Integr Genomics 2024; 24:216. [PMID: 39549144 PMCID: PMC11569009 DOI: 10.1007/s10142-024-01485-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/18/2024]
Abstract
At the dawn of new millennium, policy makers and researchers focused on sustainable agricultural growth, aiming for food security and enhanced food quality. Several emerging scientific innovations hold the promise to meet the future challenges. Nanotechnology presents a promising avenue to tackle the diverse challenges in agriculture. By leveraging nanomaterials, including nano fertilizers, pesticides, and sensors, it provides targeted delivery methods, enhancing efficacy in both crop production and protection. This integration of nanotechnology with agriculture introduces innovations like disease diagnostics, improved nutrient uptake in plants, and advanced delivery systems for agrochemicals. These precision-based approaches not only optimize resource utilization but also reduce environmental impact, aligning well with sustainability objectives. Concurrently, genetic innovations, including genome editing and advanced breeding techniques, enable the development of crops with improved yield, resilience, and nutritional content. The emergence of precision gene-editing technologies, exemplified by CRISPR/Cas9, can transform the realm of genetic modification and enabled precise manipulation of plant genomes while avoiding the incorporation of external DNAs. Integration of nanotechnology and genetic innovations in agriculture presents a transformative approach. Leveraging nanoparticles for targeted genetic modifications, nanosensors for early plant health monitoring, and precision nanomaterials for controlled delivery of inputs offers a sustainable pathway towards enhanced crop productivity, resource efficiency, and food safety throughout the agricultural lifecycle. This comprehensive review outlines the pivotal role of nanotechnology in precision agriculture, emphasizing soil health improvement, stress resilience against biotic and abiotic factors, environmental sustainability, and genetic engineering.
Collapse
Affiliation(s)
- Arzish Javaid
- Plant Genomics and Molecular Breeding Laboratory, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE- C, PIEAS), Faisalabad, 38000, Punjab, Pakistan
| | - Sadaf Hameed
- Faculty of Science and Technology, University of Central Punjab, Lahore, 54000, Pakistan
| | - Lijie Li
- School of Life Sciences, Henan Institute of Sciences and Technology, Xinxiang, 453003, Henan, China
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - Zhiyong Zhang
- School of Life Sciences, Henan Institute of Sciences and Technology, Xinxiang, 453003, Henan, China
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA.
| | - Mehboob-Ur -Rahman
- Plant Genomics and Molecular Breeding Laboratory, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE- C, PIEAS), Faisalabad, 38000, Punjab, Pakistan.
| |
Collapse
|
3
|
Zhang X, Vinatzer BA, Li S. Hyperspectral imaging analysis for early detection of tomato bacterial leaf spot disease. Sci Rep 2024; 14:27666. [PMID: 39532930 PMCID: PMC11557939 DOI: 10.1038/s41598-024-78650-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Recent advancements in hyperspectral imaging (HSI) for early disease detection have shown promising results, yet there is a lack of validated high-resolution (spatial and spectral) HSI data representing the responses of plants at different stages of leaf disease progression. To address these gaps, we used bacterial leaf spot (Xanthomonas perforans) of tomato as a model system. Hyperspectral images of tomato leaves, validated against in planta pathogen populations for seven consecutive days, were analyzed to reveal differences between infected and healthy leaves. Machine learning models were trained using leaf-level full spectra data, leaf-level Vegetation index (VI) data, and pixel-level full spectra data at four disease progression stages. The results suggest that HSI can detect disease on tomato leaves at pre-symptomatic stages and differentiate bacterial disease spots from abiotic leaf spots. Using VI data as features for machine learning improved overall classification performance by 26-37% compared to the direct use of raw data. Critical wavelength bands and VIs varied across disease progression stages, suggesting that pre-symptomatic disease detection relied more on changes in leaf water content (1400 nm) and plant defense hormone-mediated responses (750 nm) rather than changes in leaf pigments or internal structure (800-900 nm), which may become more crucial during symptomatic stages. In conclusion, this study provides valuable insights into the dynamics of bacterial spot disease, revealing the potential benefits of leaf structure segmentation and VI group pattern analysis in HSI studies for the early detection of leaf diseases.
Collapse
Affiliation(s)
- Xuemei Zhang
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Boris A Vinatzer
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Song Li
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
4
|
Perdomo SA, Valencia DP, Velez GE, Jaramillo-Botero A. Advancing abiotic stress monitoring in plants with a wearable non-destructive real-time salicylic acid laser-induced-graphene sensor. Biosens Bioelectron 2024; 255:116261. [PMID: 38565026 DOI: 10.1016/j.bios.2024.116261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Drought and salinity stresses present significant challenges that exert a severe impact on crop productivity worldwide. Understanding the dynamics of salicylic acid (SA), a vital phytohormone involved in stress response, can provide valuable insights into the mechanisms of plant adaptation to cope with these challenging conditions. This paper describes and tests a sensor system that enables real-time and non-invasive monitoring of SA content in avocado plants exposed to drought and salinity. By using a reverse iontophoretic system in conjunction with a laser-induced graphene electrode, we demonstrated a sensor with high sensitivity (82.3 nA/[μmol L-1⋅cm-2]), low limit of detection (LOD, 8.2 μmol L-1), and fast sampling response (20 s). Significant differences were observed between the dynamics of SA accumulation in response to drought versus those of salt stress. SA response under drought stress conditions proved to be faster and more intense than under salt stress conditions. These different patterns shed light on the specific adaptive strategies that avocado plants employ to cope with different types of environmental stressors. A notable advantage of the proposed technology is the minimal interference with other plant metabolites, which allows for precise SA detection independent of any interfering factors. In addition, the system features a short extraction time that enables an efficient and rapid analysis of SA content.
Collapse
Affiliation(s)
- Sammy A Perdomo
- Omicas Alliance. Pontificia Universidad Javeriana, Cali, 760031, Colombia
| | | | | | - Andres Jaramillo-Botero
- Omicas Alliance. Pontificia Universidad Javeriana, Cali, 760031, Colombia; Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, United States.
| |
Collapse
|
5
|
Kadan-Jamal K, Jog A, Sophocleous M, Dotan T, Frumin P, Kuperberg Goshen T, Schuster S, Avni A, Shacham-Diamand Y. Sensing of gene expression in live cells using electrical impedance spectroscopy and DNA-functionalized gold nanoparticles. Biosens Bioelectron 2024; 252:116041. [PMID: 38401280 DOI: 10.1016/j.bios.2024.116041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/21/2023] [Accepted: 01/12/2024] [Indexed: 02/26/2024]
Abstract
A novel electrical impedance spectroscopy-based method for non-destructive sensing of gene expression in living cells is presented. The approach used takes advantage of the robustness and responsiveness of electrical impedance spectroscopy and the highly specific and selective nature of DNA hybridization. The technique uses electrical impedance spectroscopy and gold nanoparticles functionalized with single-stranded DNA complementary to an mRNA of interest to provide reliable, real-time, and quantifiable data on gene expression in live cells. The system was validated by demonstrating specific detection of the uidA mRNA, which codes for the β-glucuronidase (GUS) enzyme, in Solanum lycopersicum MsK8 cells. Gold nanoparticles were functionalized with single-stranded DNA oligonucleotides consisting of either a sequence complementary to uidA mRNA or an arbitrary sequence. The DNA-functionalized gold nanoparticles were mixed with cell suspensions, allowing the gold nanoparticles to penetrate into the cells. The impedance spectra of suspensions of cells with gold nanoparticles inserted within them were then studied. In suspensions of uidA-expressing cells and gold nanoparticles functionalized with the complementary single-stranded DNA oligonucleotide, the impedance magnitude in the frequency range of interest was significantly higher (146 %) in comparison to all other controls. Due to its highly selective nature, the methodology has the potential to be used as a precision agricultural sensing system for accurate and real-time detection of markers of stress, viral infection, disease, and normal physiological activities.
Collapse
Affiliation(s)
- Kian Kadan-Jamal
- Department of Materials Science and Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Aakash Jog
- Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel.
| | - Marios Sophocleous
- Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Research & Development Department, eBOS Technologies Ltd., Nicosia, Cyprus
| | - Tali Dotan
- Department of Materials Science and Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Polina Frumin
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | | | - Silvia Schuster
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Adi Avni
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Yosi Shacham-Diamand
- Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Scojen Institute of Synthetic Biology, Reichmann University, Herzliya, Israel
| |
Collapse
|
6
|
Tsong JL, Khor SM. Modern analytical and bioanalytical technologies and concepts for smart and precision farming. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023. [PMID: 37376849 DOI: 10.1039/d3ay00647f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Unpredictable natural disasters, disease outbreaks, climate change, pollution, and war constantly threaten food crop production. Smart and precision farming encourages using information or data obtained by using advanced technology (sensors, AI, and IoT) to improve decision-making in agriculture and achieve high productivity. For instance, weather prediction, nutrient information, pollutant assessment, and pathogen determination can be made with the help of new analytical and bioanalytical methods, demonstrating the potential for societal impact such as environmental, agricultural, and food science. As a rising technology, biosensors can be a potential tool to promote smart and precision farming in developing and underdeveloped countries. This review emphasizes the role of on-field, in vivo, and wearable biosensors in smart and precision farming, especially those biosensing systems that have proven with suitably complex and analytically challenging samples. The development of various agricultural biosensors in the past five years that fulfill market requirements such as portability, low cost, long-term stability, user-friendliness, rapidity, and on-site monitoring will be reviewed. The challenges and prospects for developing IoT and AI-integrated biosensors to increase crop yield and advance sustainable agriculture will be discussed. Using biosensors in smart and precision farming would ensure food security and revenue for farming communities.
Collapse
Affiliation(s)
- Jia Ling Tsong
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Sook Mei Khor
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
- Centre for Fundamental and Frontier Sciences in Nanostructure Self-Assembly, Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
7
|
Yang P, Zhao L, Gao YG, Xia Y. Detection, Diagnosis, and Preventive Management of the Bacterial Plant Pathogen Pseudomonas syringae. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091765. [PMID: 37176823 PMCID: PMC10181079 DOI: 10.3390/plants12091765] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/01/2023] [Accepted: 04/14/2023] [Indexed: 05/15/2023]
Abstract
Plant diseases caused by the pathogen Pseudomonas syringae are serious problems for various plant species worldwide. Accurate detection and diagnosis of P. syringae infections are critical for the effective management of these plant diseases. In this review, we summarize the current methods for the detection and diagnosis of P. syringae, including traditional techniques such as culture isolation and microscopy, and relatively newer techniques such as PCR and ELISA. It should be noted that each method has its advantages and disadvantages, and the choice of each method depends on the specific requirements, resources of each laboratory, and field settings. We also discuss the future trends in this field, such as the need for more sensitive and specific methods to detect the pathogens at low concentrations and the methods that can be used to diagnose P. syringae infections that are co-existing with other pathogens. Modern technologies such as genomics and proteomics could lead to the development of new methods of highly accurate detection and diagnosis based on the analysis of genetic and protein markers of the pathogens. Furthermore, using machine learning algorithms to analyze large data sets could yield new insights into the biology of P. syringae and novel diagnostic strategies. This review could enhance our understanding of P. syringae and help foster the development of more effective management techniques of the diseases caused by related pathogens.
Collapse
Affiliation(s)
- Piao Yang
- Department of Plant Pathology, College of Food, Agricultural, and Environmental Science, The Ohio State University, Columbus, OH 43210, USA
| | - Lijing Zhao
- Department of Plant Pathology, College of Food, Agricultural, and Environmental Science, The Ohio State University, Columbus, OH 43210, USA
| | - Yu Gary Gao
- OSU South Centers, The Ohio State University, 1864 Shyville Road, Piketon, OH 45661, USA
- Department of Extension, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Ye Xia
- Department of Plant Pathology, College of Food, Agricultural, and Environmental Science, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
8
|
Rudewicz-Kowalczyk D, Grabowska I. Simultaneous Electrochemical Detection of LDL and MDA-LDL Using Antibody-Ferrocene or Anthraquinone Conjugates Coated Magnetic Beads. Int J Mol Sci 2023; 24:ijms24066005. [PMID: 36983078 PMCID: PMC10056855 DOI: 10.3390/ijms24066005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
The simultaneous detection of atherosclerotic cardiovascular disease (ACSVD) biomarkers was recently of great scientific interest. In this work, magnetic beads-based immunosensors for the simultaneous detection of low density lipoprotein (LDL) and malondialdehyde-modified low density lipoprotein (MDA-LDL) were presented. The approach proposed was based on the formation of two types of specific immunoconjugates consisting of monoclonal antibodies: anti-LDL or anti-MDA-LDL, together with redox active molecules: ferrocene and anthraquinone, respectively, coated on magnetic beads (MBs). The decrease in redox agent current in the concentration range: 0.001-1.0 ng/mL for LDL and 0.01-10.0 ng/mL for MDA-LDL, registered by square wave voltammetry (SWV), was observed upon the creation of complex between LDL or MDA-LDL and appropriate immunoconjugates. The detection limits of 0.2 ng/mL for LDL and 0.1 ng/mL for MDA-LDL were estimated. Moreover, the results of selectivity against the possible interferents were good, as human serum albumin (HSA) and high density lipoprotein (HDL), stability and recovery studies demonstrated the potential of platform proposed for early prognosis and diagnosis of ASCVD.
Collapse
Affiliation(s)
- Daria Rudewicz-Kowalczyk
- Institute of Animal Reproduction of Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Iwona Grabowska
- Institute of Animal Reproduction of Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| |
Collapse
|
9
|
Ahmed FK, Alghuthaymi MA, Abd-Elsalam KA, Ravichandran M, Kalia A. Nano-Based Robotic Technologies for Plant Disease Diagnosis. NANOROBOTICS AND NANODIAGNOSTICS IN INTEGRATIVE BIOLOGY AND BIOMEDICINE 2023:327-359. [DOI: 10.1007/978-3-031-16084-4_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
10
|
Mondal R, Dam P, Chakraborty J, Paret ML, Katı A, Altuntas S, Sarkar R, Ghorai S, Gangopadhyay D, Mandal AK, Husen A. Potential of nanobiosensor in sustainable agriculture: the state-of-art. Heliyon 2022; 8:e12207. [PMID: 36578430 PMCID: PMC9791828 DOI: 10.1016/j.heliyon.2022.e12207] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/28/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
A rapid surge in world population leads to an increase in worldwide demand for agricultural products. Nanotechnology and its applications in agriculture have appeared as a boon to civilization with enormous potential in transforming conventional farming practices into redefined farming activities. Low-cost portable nanobiosensors are the most effective diagnostic tool for the rapid on-site assessment of plant and soil health including plant biotic and abiotic stress level, nutritional status, presence of hazardous chemicals in soil, etc. to maintain proper farming and crop productivity. Nanobiosensors detect physiological signals and convert them into standardized detectable signals. In order to achieve a reliable sensing analysis, nanoparticles can aid in signal amplification and sensor sensitivity by lowering the detection limit. The high selectivity and sensitivity of nanobiosensors enable early detection and management of targeted abnormalities. This study identifies the types of nanobiosensors according to the target application in agriculture sector.
Collapse
Affiliation(s)
- Rittick Mondal
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University, North Dinajpur, West Bengal 733134, India
| | - Paulami Dam
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University, North Dinajpur, West Bengal 733134, India
| | - Joydeep Chakraborty
- Department of Microbiology, Raiganj University, North Dinajpur, West Bengal 733134, India
| | - Mathew L. Paret
- North Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Quincy, FL 32351, USA
- Plant Pathology Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Ahmet Katı
- Department of Biotechnology, University of Health Sciences Turkey, 34668, Istanbul, Turkey
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey, 34668, Istanbul, Turkey
| | - Sevde Altuntas
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey, 34668, Istanbul, Turkey
- Department of Tissue Engineering, University of Health Sciences Turkey, 34668, Istanbul, Turkey
| | - Ranit Sarkar
- Department of Microbiology, Orissa University of Agriculture & Technology, Bhubaneswar, Odisha 751003, India
| | - Suvankar Ghorai
- Department of Microbiology, Raiganj University, North Dinajpur, West Bengal 733134, India
| | - Debnirmalya Gangopadhyay
- Silkworm Genetics and Breeding Laboratory, Department of Sericulture, Raiganj University, North Dinajpur, West Bengal 733134, India
| | - Amit Kumar Mandal
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University, North Dinajpur, West Bengal 733134, India
| | - Azamal Husen
- Wolaita Sodo University, PO Box 138, Wolaita, Ethiopia
| |
Collapse
|
11
|
Antibody–Ferrocene Conjugates as a Platform for Electro-Chemical Detection of Low-Density Lipoprotein. Molecules 2022; 27:molecules27175492. [PMID: 36080260 PMCID: PMC9458124 DOI: 10.3390/molecules27175492] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/15/2022] [Accepted: 08/24/2022] [Indexed: 11/26/2022] Open
Abstract
Low-density lipoprotein (LDL) is a cardiac biomarker identified in the pathology of cardiovascular disease (CVD). Typically, the level of LDL is calculated using the Friedewald relationship based on measured values of total cholesterol, high-density lipoproteins (HDL), and triglycerides. Unfortunately, this approach leads to some errors in calculation. Therefore, direct methods that can be used for fast and accurate detection of LDL are needed. The purpose of this study was to develop an electrochemical platform for the detection of LDL based on an antibody–ferrocene conjugate. An anti-apolipoprotein B-100 antibody labeled with ferrocene was covalently immobilized on the layer of 4-aminothiophenol (4-ATP) on the surface of gold electrodes. Upon interaction between LDL and the antibody–ferrocene conjugate, a decrease in the ferrocene redox signal registered by square wave voltammetry was observed, which depends linearly on the concentration from 0.01 ng/mL to 1.0 ng/mL. The obtained limit of detection was equal to 0.53 ng/mL. Moreover, the satisfied selectivity toward human serum albumin (HSA), HDL, and malondialdehyde-modified low-density lipoprotein (MDA-LDL) was observed. In addition, the acceptable recovery rates of LDL in human serum samples indicate the possible application of immunosensors presented in clinical diagnostics.
Collapse
|
12
|
Latent potential of current plant diagnostics for detection of sugarcane diseases. CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
13
|
Rudewicz-Kowalczyk D, Grabowska I. Detection of Low Density Lipoprotein-Comparison of Electrochemical Immuno- and Aptasensor. SENSORS 2021; 21:s21227733. [PMID: 34833808 PMCID: PMC8620298 DOI: 10.3390/s21227733] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 12/24/2022]
Abstract
An elevated level of low density lipoprotein (LDL) can lead to the cardiovascular system-related diseases, such as atherosclerosis and others. Therefore, fast, simple, and accurate methods for LDL detection are very desirable. In this work, the parameters characterizing the electrochemical immuno-and aptasensor for detection of LDL have been compared for the first time. An immunosensor has been designed, for which the anti-apolipoprotein B-100 antibody was covalently attached to 4-aminothiophenol (4-ATP) on the surface of the gold electrode. In the case of an aptasensor, the gold electrode was modified in a mixture of ssDNA aptamer specific for LDL modified with –SH group and 6-mercaptohexanol. Square-wave voltammetry has been used for detection of LDL in PBS containing redox active marker, [Fe(CN)6]3−/4−. Our results show the linear dependence of [Fe(CN)6]3−/4− redox signal changes on LDL concentration for both biosensors, in the range from 0.01 ng/mL to 1.0 ng/mL. The limit of detection was 0.31 and 0.25 ng/mL, for immuno- and aptasensor, respectively. Whereas slightly better selectivity toward human serum albumin (HSA), high density lipoprotein (HDL), and malondialdehyde modified low density lipoprotein (MDA-LDL) has been observed for aptasensor. Moreover, the other components of human blood serum samples did not influence aptasensor sensitivity.
Collapse
|
14
|
Advances in the Application of Nanomaterials as Treatments for Bacterial Infectious Diseases. Pharmaceutics 2021; 13:pharmaceutics13111913. [PMID: 34834328 PMCID: PMC8618949 DOI: 10.3390/pharmaceutics13111913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/01/2022] Open
Abstract
Bacteria-targeting nanomaterials have been widely used in the diagnosis and treatment of bacterial infectious diseases. These nanomaterials show great potential as antimicrobial agents due to their broad-spectrum antibacterial capacity and relatively low toxicity. Recently, nanomaterials have improved the accurate detection of pathogens, provided therapeutic strategies against nosocomial infections and facilitated the delivery of antigenic protein vaccines that induce humoral and cellular immunity. Biomaterial implants, which have traditionally been hindered by bacterial colonization, benefit from their ability to prevent bacteria from forming biofilms and spreading into adjacent tissues. Wound repair is improving in terms of both the function and prevention of bacterial infection, as we tailor nanomaterials to their needs, select encapsulation methods and materials, incorporate activation systems and add immune-activating adjuvants. Recent years have produced numerous advances in their antibacterial applications, but even further expansion in the diagnosis and treatment of infectious diseases is expected in the future.
Collapse
|
15
|
Methodology of Selecting the Optimal Receptor to Create an Electrochemical Immunosensor for Equine Arteritis Virus Protein Detection. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9090265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The study reports a methodology of selecting the optimal receptor to create an electrochemical immunosensor for equine arteritis virus (EAV) protein detection. The detection was based on antigen recognition by antibodies immobilized on gold electrodes. Modification steps were controlled by electrochemical impedance spectroscopy and cyclic voltammetry measurements. In order to obtain the impedance immunosensor with the best parameters, seven different receptors complementary to equine arteritis virus protein were used. In order to make the selection, a rapid screening test was carried out to check the sensor’s response to blank, extremely low and high concentrations of target EAV protein, and negative sample: M protein from Streptococcus equi and glycoprotein G from Equid alphaherpesvirus 1. F6 10G receptor showed the best performance.
Collapse
|
16
|
Białobrzeska W, Dziąbowska K, Lisowska M, Mohtar MA, Muller P, Vojtesek B, Krejcir R, O’Neill R, Hupp TR, Malinowska N, Bięga E, Bigus D, Cebula Z, Pala K, Czaczyk E, Żołędowska S, Nidzworski D. An Ultrasensitive Biosensor for Detection of Femtogram Levels of the Cancer Antigen AGR2 Using Monoclonal Antibody Modified Screen-Printed Gold Electrodes. BIOSENSORS 2021; 11:184. [PMID: 34200338 PMCID: PMC8230265 DOI: 10.3390/bios11060184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/24/2021] [Accepted: 06/06/2021] [Indexed: 12/22/2022]
Abstract
The detection of cancer antigens is a major aim of cancer research in order to develop better patient management through early disease detection. Many cancers including prostate, lung, and ovarian secrete a protein disulfide isomerase protein named AGR2 that has been previously detected in urine and plasma using mass spectrometry. Here we determine whether a previously developed monoclonal antibody targeting AGR2 can be adapted from an indirect two-site ELISA format into a direct detector using solid-phase printed gold electrodes. The screen-printed gold electrode was surface functionalized with the anti-AGR2 specific monoclonal antibody. The interaction of the recombinant AGR2 protein and the anti-AGR2 monoclonal antibody functionalized electrode changed its electrochemical impedance spectra. Nyquist diagrams were obtained after incubation in an increasing concentration of purified AGR2 protein with a range of concentrations from 0.01 fg/mL to 10 fg/mL. In addition, detection of the AGR2 antigen can be achieved from cell lysates in medium or artificial buffer. These data highlight the utility of an AGR2-specific monoclonal antibody that can be functionalized onto a gold printed electrode for a one-step capture and quantitation of the target antigen. These platforms have the potential for supporting methodologies using more complex bodily fluids including plasma and urine for improved cancer diagnostics.
Collapse
Affiliation(s)
- Wioleta Białobrzeska
- Institute of Biotechnology and Molecular Medicine, 3 Trzy Lipy St., 80-172 Gdansk, Poland; (N.M.); (E.B.); (D.B.); (Z.C.); (S.Ż.); (D.N.)
| | | | - Małgorzata Lisowska
- International Centre for Cancer Vaccine Science, University of Gdansk, Kładki 24 St., 80-822 Gdańsk, Poland; (M.L.); (T.R.H.)
| | - M. Aiman Mohtar
- UKM Medical Centre, UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Petr Muller
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 65653 Brno, Czech Republic; (P.M.); (B.V.); (R.K.)
| | - Borivoj Vojtesek
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 65653 Brno, Czech Republic; (P.M.); (B.V.); (R.K.)
| | - Radovan Krejcir
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 65653 Brno, Czech Republic; (P.M.); (B.V.); (R.K.)
| | - Robert O’Neill
- Cambridge Oesophagogastric Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK;
| | - Ted R. Hupp
- International Centre for Cancer Vaccine Science, University of Gdansk, Kładki 24 St., 80-822 Gdańsk, Poland; (M.L.); (T.R.H.)
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Natalia Malinowska
- Institute of Biotechnology and Molecular Medicine, 3 Trzy Lipy St., 80-172 Gdansk, Poland; (N.M.); (E.B.); (D.B.); (Z.C.); (S.Ż.); (D.N.)
| | - Ewelina Bięga
- Institute of Biotechnology and Molecular Medicine, 3 Trzy Lipy St., 80-172 Gdansk, Poland; (N.M.); (E.B.); (D.B.); (Z.C.); (S.Ż.); (D.N.)
| | - Daniel Bigus
- Institute of Biotechnology and Molecular Medicine, 3 Trzy Lipy St., 80-172 Gdansk, Poland; (N.M.); (E.B.); (D.B.); (Z.C.); (S.Ż.); (D.N.)
| | - Zofia Cebula
- Institute of Biotechnology and Molecular Medicine, 3 Trzy Lipy St., 80-172 Gdansk, Poland; (N.M.); (E.B.); (D.B.); (Z.C.); (S.Ż.); (D.N.)
| | - Katarzyna Pala
- SensDx, 14b Postępu St., 02-676 Warszawa, Poland; (K.D.); (K.P.); (E.C.)
| | - Elżbieta Czaczyk
- SensDx, 14b Postępu St., 02-676 Warszawa, Poland; (K.D.); (K.P.); (E.C.)
| | - Sabina Żołędowska
- Institute of Biotechnology and Molecular Medicine, 3 Trzy Lipy St., 80-172 Gdansk, Poland; (N.M.); (E.B.); (D.B.); (Z.C.); (S.Ż.); (D.N.)
| | - Dawid Nidzworski
- Institute of Biotechnology and Molecular Medicine, 3 Trzy Lipy St., 80-172 Gdansk, Poland; (N.M.); (E.B.); (D.B.); (Z.C.); (S.Ż.); (D.N.)
| |
Collapse
|
17
|
Dyussembayev K, Sambasivam P, Bar I, Brownlie JC, Shiddiky MJA, Ford R. Biosensor Technologies for Early Detection and Quantification of Plant Pathogens. Front Chem 2021; 9:636245. [PMID: 34150716 PMCID: PMC8207201 DOI: 10.3389/fchem.2021.636245] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/19/2021] [Indexed: 11/13/2022] Open
Abstract
Plant pathogens are a major reason of reduced crop productivity and may lead to a shortage of food for both human and animal consumption. Although chemical control remains the main method to reduce foliar fungal disease incidence, frequent use can lead to loss of susceptibility in the fungal population. Furthermore, over-spraying can cause environmental contamination and poses a heavy financial burden on growers. To prevent or control disease epidemics, it is important for growers to be able to detect causal pathogen accurately, sensitively, and rapidly, so that the best practice disease management strategies can be chosen and enacted. To reach this goal, many culture-dependent, biochemical, and molecular methods have been developed for plant pathogen detection. However, these methods lack accuracy, specificity, reliability, and rapidity, and they are generally not suitable for in-situ analysis. Accordingly, there is strong interest in developing biosensing systems for early and accurate pathogen detection. There is also great scope to translate innovative nanoparticle-based biosensor approaches developed initially for human disease diagnostics for early detection of plant disease-causing pathogens. In this review, we compare conventional methods used in plant disease diagnostics with new sensing technologies in particular with deeper focus on electrochemical and optical biosensors that may be applied for plant pathogen detection and management. In addition, we discuss challenges facing biosensors and new capability the technology provides to informing disease management strategies.
Collapse
Affiliation(s)
- Kazbek Dyussembayev
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD, Australia
- School of Environment and Science, Griffith University, Nathan, QLD, Australia
| | - Prabhakaran Sambasivam
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD, Australia
| | - Ido Bar
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD, Australia
- School of Environment and Science, Griffith University, Nathan, QLD, Australia
| | - Jeremy C. Brownlie
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD, Australia
- School of Environment and Science, Griffith University, Nathan, QLD, Australia
| | - Muhammad J. A. Shiddiky
- School of Environment and Science, Griffith University, Nathan, QLD, Australia
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, QLD, Australia
| | - Rebecca Ford
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD, Australia
- School of Environment and Science, Griffith University, Nathan, QLD, Australia
| |
Collapse
|
18
|
Rapid and highly sensitive pathogen detection by real-time DNA monitoring using a nanogap impedimetric sensor with recombinase polymerase amplification. Biosens Bioelectron 2021; 179:113042. [PMID: 33662816 DOI: 10.1016/j.bios.2021.113042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 01/07/2021] [Accepted: 01/24/2021] [Indexed: 11/23/2022]
Abstract
Fast detection of pathogens is important for protecting our health and society. Herein, we present a high-performance nanogap impedimetric sensor for monitoring nucleic acid amplification in real time using isothermal recombinase polymerase amplification (RPA) for rapid pathogen detection. The nanogap electrode chip has two pairs of opposing gold electrodes with a 100 nm gap and was fixed to a PCB. Then, the nanogap impedimetric sensor was immersed in RPA reaction solution for the detection of E. coli O157:H7, and target DNA amplification was evaluated through bulk solution impedance changes using impedance spectroscopy every minute during RPA. In addition, target gene amplification in the sample solution during RPA was confirmed with a 2% DNA agarose gel. Our nanogap impedimetric sensor can detect down to a single copy of the eae A gene in gDNA extracted from E. coli O157:H7 as well as a single cell of pathogenic E. coli O157:H7 strain within 5 min during direct RPA, which was performed with the pathogen itself and without the extraction and purification of target gDNA. The miniaturized nanogap impedimetric sensor has potential as a cost-effective point-of-care device for fast and accurate portable pathogen detection via real-time nucleic acid analysis.
Collapse
|
19
|
Buja I, Sabella E, Monteduro AG, Chiriacò MS, De Bellis L, Luvisi A, Maruccio G. Advances in Plant Disease Detection and Monitoring: From Traditional Assays to In-Field Diagnostics. SENSORS 2021; 21:s21062129. [PMID: 33803614 PMCID: PMC8003093 DOI: 10.3390/s21062129] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 12/20/2022]
Abstract
Human activities significantly contribute to worldwide spread of phytopathological adversities. Pathogen-related food losses are today responsible for a reduction in quantity and quality of yield and decrease value and financial returns. As a result, “early detection” in combination with “fast, accurate, and cheap” diagnostics have also become the new mantra in plant pathology, especially for emerging diseases or challenging pathogens that spread thanks to asymptomatic individuals with subtle initial symptoms but are then difficult to face. Furthermore, in a globalized market sensitive to epidemics, innovative tools suitable for field-use represent the new frontier with respect to diagnostic laboratories, ensuring that the instruments and techniques used are suitable for the operational contexts. In this framework, portable systems and interconnection with Internet of Things (IoT) play a pivotal role. Here we review innovative diagnostic methods based on nanotechnologies and new perspectives concerning information and communication technology (ICT) in agriculture, resulting in an improvement in agricultural and rural development and in the ability to revolutionize the concept of “preventive actions”, making the difference in fighting against phytopathogens, all over the world.
Collapse
Affiliation(s)
- Ilaria Buja
- Omnics Research Group, Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Via per Monteroni, 73100 Lecce, Italy; (I.B.); (A.G.M.); (G.M.)
- Institute of Nanotechnology, CNR NANOTEC, Via per Monteroni, 73100 Lecce, Italy;
| | - Erika Sabella
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, 73100 Lecce, Italy; (E.S.); (L.D.B.)
| | - Anna Grazia Monteduro
- Omnics Research Group, Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Via per Monteroni, 73100 Lecce, Italy; (I.B.); (A.G.M.); (G.M.)
- Institute of Nanotechnology, CNR NANOTEC, Via per Monteroni, 73100 Lecce, Italy;
| | | | - Luigi De Bellis
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, 73100 Lecce, Italy; (E.S.); (L.D.B.)
| | - Andrea Luvisi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, 73100 Lecce, Italy; (E.S.); (L.D.B.)
- Correspondence:
| | - Giuseppe Maruccio
- Omnics Research Group, Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Via per Monteroni, 73100 Lecce, Italy; (I.B.); (A.G.M.); (G.M.)
- Institute of Nanotechnology, CNR NANOTEC, Via per Monteroni, 73100 Lecce, Italy;
| |
Collapse
|
20
|
Schulze H, Wilson H, Cara I, Carter S, Dyson EN, Elangovan R, Rimmer S, Bachmann TT. Label-Free Electrochemical Sensor for Rapid Bacterial Pathogen Detection Using Vancomycin-Modified Highly Branched Polymers. SENSORS (BASEL, SWITZERLAND) 2021; 21:1872. [PMID: 33800145 PMCID: PMC7962439 DOI: 10.3390/s21051872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 11/17/2022]
Abstract
Rapid point of care tests for bacterial infection diagnosis are of great importance to reduce the misuse of antibiotics and burden of antimicrobial resistance. Here, we have successfully combined a new class of non-biological binder molecules with electrochemical impedance spectroscopy (EIS)-based sensor detection for direct, label-free detection of Gram-positive bacteria making use of the specific coil-to-globule conformation change of the vancomycin-modified highly branched polymers immobilized on the surface of gold screen-printed electrodes upon binding to Gram-positive bacteria. Staphylococcus carnosus was detected after just 20 min incubation of the sample solution with the polymer-functionalized electrodes. The polymer conformation change was quantified with two simple 1 min EIS tests before and after incubation with the sample. Tests revealed a concentration dependent signal change within an OD600 range of Staphylococcus carnosus from 0.002 to 0.1 and a clear discrimination between Gram-positive Staphylococcus carnosus and Gram-negative Escherichia coli bacteria. This exhibits a clear advancement in terms of simplified test complexity compared to existing bacteria detection tests. In addition, the polymer-functionalized electrodes showed good storage and operational stability.
Collapse
Affiliation(s)
- Holger Schulze
- Infection Medicine, Edinburgh Medical School, College of Medicine and Veterinary Medicine, The University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK; (H.S.); (H.W.); (I.C.)
| | - Harry Wilson
- Infection Medicine, Edinburgh Medical School, College of Medicine and Veterinary Medicine, The University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK; (H.S.); (H.W.); (I.C.)
| | - Ines Cara
- Infection Medicine, Edinburgh Medical School, College of Medicine and Veterinary Medicine, The University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK; (H.S.); (H.W.); (I.C.)
| | - Steven Carter
- Polymer and Biomaterials Chemistry Laboratories, School of Chemistry and Biosciences, University of Bradford, Bradford BD7 1DP, UK; (S.C.); (E.N.D.); (S.R.)
| | - Edward N. Dyson
- Polymer and Biomaterials Chemistry Laboratories, School of Chemistry and Biosciences, University of Bradford, Bradford BD7 1DP, UK; (S.C.); (E.N.D.); (S.R.)
| | - Ravikrishnan Elangovan
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India;
| | - Stephen Rimmer
- Polymer and Biomaterials Chemistry Laboratories, School of Chemistry and Biosciences, University of Bradford, Bradford BD7 1DP, UK; (S.C.); (E.N.D.); (S.R.)
| | - Till T. Bachmann
- Infection Medicine, Edinburgh Medical School, College of Medicine and Veterinary Medicine, The University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK; (H.S.); (H.W.); (I.C.)
| |
Collapse
|
21
|
Brodowski M, Kowalski M, Skwarecka M, Pałka K, Skowicki M, Kula A, Lipiński T, Dettlaff A, Ficek M, Ryl J, Dziąbowska K, Nidzworski D, Bogdanowicz R. Highly selective impedimetric determination of Haemophilus influenzae protein D using maze-like boron-doped carbon nanowall electrodes. Talanta 2021; 221:121623. [DOI: 10.1016/j.talanta.2020.121623] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 12/22/2022]
|
22
|
Affiliation(s)
- Mohamed Sharafeldin
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
| | - Jason J. Davis
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
| |
Collapse
|
23
|
Integration of an XGBoost model and EIS detection to determine the effect of low inhibitor concentrations on E. coli. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|