1
|
Lokar N, Pečar B, Možek M, Vrtačnik D. Microfluidic Electrochemical Glucose Biosensor with In Situ Enzyme Immobilization. BIOSENSORS 2023; 13:364. [PMID: 36979576 PMCID: PMC10046266 DOI: 10.3390/bios13030364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
The development and characterization of a microfluidic electrochemical glucose biosensor are presented herein. The transducer part is based on thin-film metal electrodes on a glass substrate. The biological recognition element of the biosensor is the pyrroloquinoline quinone-glucose dehydrogenase (PQQ-GdhB) enzyme, selectively in situ immobilized via microcontact printing of a mixed self-assembling monolayer (SAM) on a gold working electrode, while the microfluidic part of the device comprises microchannel and microfluidic connections formed in a polydimethylsiloxane (PDMS) elastomer. The electrode properties throughout all steps of biosensor construction and the biosensor response to glucose concentration and analyte flow rate were characterized by cyclic voltammetry and chronoamperometry. A measurement range of up to 10 mM in glucose concentration with a linear range up to 200 μM was determined. A detection limit of 30 µM in glucose concentration was obtained. Respective biosensor sensitivities of 0.79 nA/µM/mm2 and 0.61 nA/µM/mm2 were estimated with and without a flow at 20 µL/min. The developed approach of in situ enzyme immobilization can find a wide number of applications in the development of microfluidic biosensors, offering a path towards continuous and time-independent detection.
Collapse
|
2
|
Fata F, Gabriele F, Angelucci F, Ippoliti R, Di Leandro L, Giansanti F, Ardini M. Bio-Tailored Sensing at the Nanoscale: Biochemical Aspects and Applications. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23020949. [PMID: 36679744 PMCID: PMC9866807 DOI: 10.3390/s23020949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 06/01/2023]
Abstract
The demonstration of the first enzyme-based electrode to detect glucose, published in 1967 by S. J. Updike and G. P. Hicks, kicked off huge efforts in building sensors where biomolecules are exploited as native or modified to achieve new or improved sensing performances. In this growing area, bionanotechnology has become prominent in demonstrating how nanomaterials can be tailored into responsive nanostructures using biomolecules and integrated into sensors to detect different analytes, e.g., biomarkers, antibiotics, toxins and organic compounds as well as whole cells and microorganisms with very high sensitivity. Accounting for the natural affinity between biomolecules and almost every type of nanomaterials and taking advantage of well-known crosslinking strategies to stabilize the resulting hybrid nanostructures, biosensors with broad applications and with unprecedented low detection limits have been realized. This review depicts a comprehensive collection of the most recent biochemical and biophysical strategies for building hybrid devices based on bioconjugated nanomaterials and their applications in label-free detection for diagnostics, food and environmental analysis.
Collapse
|
3
|
Gao Y, Wang Y, Wang Y, Magaud P, Liu Y, Zeng F, Yang J, Baldas L, Song Y. Nanocatalysis meets microfluidics: A powerful platform for sensitive bioanalysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
4
|
Liu W, Duan W, Jia L, Wang S, Guo Y, Zhang G, Zhu B, Huang W, Zhang S. Surface Plasmon-Enhanced Photoelectrochemical Sensor Based on Au Modified TiO 2 Nanotubes. NANOMATERIALS 2022; 12:nano12122058. [PMID: 35745399 PMCID: PMC9230101 DOI: 10.3390/nano12122058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 01/05/2023]
Abstract
Based on the enhanced charge separation efficiency of the one-dimensional structure and strong surface plasmon resonance (SPR) of gold, a gold modified TiO2 nanotube (Au/TiO2NTs) glucose photoelectrochemical (PEC) sensor was prepared. It could be activated by visible red light (625 nm). Under optimal conditions, the Au/TiO2NTs sensor exhibited a good sensitivity of 170.37 μA·mM−1·cm−2 in the range of 1–90 μM (R2 = 0.9993), and a detection limit of 1.3 μM (S/N = 3). Due to its high selectivity, good anti-interference ability, and long-term stability, the fabricated Au/TiO2NTs sensor provides practical detection of glucose. It is expected to be used in the construction of non-invasive PEC biosensors.
Collapse
Affiliation(s)
- Wanqing Liu
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (MOE), Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Nankai University, Tianjin 300071, China; (W.L.); (W.D.); (L.J.); (S.W.); (Y.G.); (G.Z.); (W.H.)
| | - Wei Duan
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (MOE), Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Nankai University, Tianjin 300071, China; (W.L.); (W.D.); (L.J.); (S.W.); (Y.G.); (G.Z.); (W.H.)
| | - Liqun Jia
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (MOE), Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Nankai University, Tianjin 300071, China; (W.L.); (W.D.); (L.J.); (S.W.); (Y.G.); (G.Z.); (W.H.)
| | - Siyu Wang
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (MOE), Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Nankai University, Tianjin 300071, China; (W.L.); (W.D.); (L.J.); (S.W.); (Y.G.); (G.Z.); (W.H.)
| | - Yuan Guo
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (MOE), Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Nankai University, Tianjin 300071, China; (W.L.); (W.D.); (L.J.); (S.W.); (Y.G.); (G.Z.); (W.H.)
| | - Guoqing Zhang
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (MOE), Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Nankai University, Tianjin 300071, China; (W.L.); (W.D.); (L.J.); (S.W.); (Y.G.); (G.Z.); (W.H.)
| | - Baolin Zhu
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (MOE), Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Nankai University, Tianjin 300071, China; (W.L.); (W.D.); (L.J.); (S.W.); (Y.G.); (G.Z.); (W.H.)
- National Demonstration Center for Experimental Chemistry Education, Nankai University, Tianjin 300071, China
- Correspondence: (B.Z.); (S.Z.)
| | - Weiping Huang
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (MOE), Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Nankai University, Tianjin 300071, China; (W.L.); (W.D.); (L.J.); (S.W.); (Y.G.); (G.Z.); (W.H.)
| | - Shoumin Zhang
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (MOE), Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Nankai University, Tianjin 300071, China; (W.L.); (W.D.); (L.J.); (S.W.); (Y.G.); (G.Z.); (W.H.)
- Correspondence: (B.Z.); (S.Z.)
| |
Collapse
|
5
|
Huo GN, Ma LL, Liu XT, Zhou KH, Suo ZC, Zhang FF, Zhu BL, Zhang SM, Huang WP. Fabrication and photoelectrochemical sensitivity of N, F-TiO2NTs/Ti with 3D structure. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Ravariu C, Parvulescu CC, Manea E, Tucureanu V. Optimized Technologies for Cointegration of MOS Transistor and Glucose Oxidase Enzyme on a Si-Wafer. BIOSENSORS 2021; 11:497. [PMID: 34940254 PMCID: PMC8699726 DOI: 10.3390/bios11120497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 01/11/2023]
Abstract
The biosensors that work with field effect transistors as transducers and enzymes as bio-receptors are called ENFET devices. In the actual paper, a traditional MOS-FET transistor is cointegrated with a glucose oxidase enzyme, offering a glucose biosensor. The manufacturing process of the proposed ENFET is optimized in the second iteration. Above the MOS gate oxide, the enzymatic bioreceptor as the glucose oxidase is entrapped onto the nano-structured TiO2 compound. This paper proposes multiple details for cointegration between MOS devices with enzymatic biosensors. The Ti conversion into a nanostructured layer occurs by anodization. Two cross-linkers are experimentally studied for a better enzyme immobilization. The final part of the paper combines experimental data with analytical models and extracts the calibration curve of this ENFET transistor, prescribing at the same time a design methodology.
Collapse
Affiliation(s)
- Cristian Ravariu
- BioNEC Group, Department of Electronic Devices Circuits and Architectures, Polytechnic University of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| | - Catalin Corneliu Parvulescu
- National Institute for Research and Development in Microtechnologies, 077190 Voluntari, Ilfov, Romania; (E.M.); (V.T.)
| | - Elena Manea
- National Institute for Research and Development in Microtechnologies, 077190 Voluntari, Ilfov, Romania; (E.M.); (V.T.)
| | - Vasilica Tucureanu
- National Institute for Research and Development in Microtechnologies, 077190 Voluntari, Ilfov, Romania; (E.M.); (V.T.)
| |
Collapse
|
7
|
Sasaki K, Furusawa H, Nagamine K, Tokito S. Constructive Optimization of a Multienzymatic Film Based on a Cascade Reaction for Electrochemical Biosensors. ACS OMEGA 2020; 5:32844-32851. [PMID: 33376922 PMCID: PMC7758940 DOI: 10.1021/acsomega.0c05521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
The application of a multienzyme cascade reaction in electrochemical biosensors has the advantage of expanding the target substrates in addition to selectivity combining multiple enzymes on an electrode. However, the multienzyme system has the drawback of inefficient substance conversion because of the time-consuming passing of intermediates between the enzymes and/or diffusional loss of the intermediates. In this study, the optimal construction of a multienzymatic film in an ammonia detection sensor was investigated using a cascade reaction of l-glutamate oxidase and l-glutamate dehydrogenase as a model sensor. Three enzymatic films were prepared: (1) a mixed film designed to have a short diffusional distance between closely located enzymes, (2) a normal-sequential layered film arranged for the correct reaction pathway, and (3) a reverse-sequential layered film as a negative control. This was followed by comparison of the conversion efficiency of ammonia to hydrogen peroxide using time-dependent potentiometric measurements of a Prussian blue electrode determining the hydrogen peroxide amount. The results indicate that the conversion efficiency of the normal-sequential layered film was the highest among the three enzymatic films. The quantitative evaluation of the intermediate conversion efficiency of the cascade reaction showed that compared to the mixed film (34%), a higher conversion efficiency of 92% was obtained in the first enzymatic reaction step. These findings will promote the use of multienzymatic cascade reaction systems not only in biosensors and bioreactors but also in various industrial fields.
Collapse
Affiliation(s)
- Kai Sasaki
- Graduate
School of Organic Materials Science, Yamagata
University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
- Innovative
Flex Course for Frontier Organic Material Systems (iFront), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Hiroyuki Furusawa
- Innovative
Flex Course for Frontier Organic Material Systems (iFront), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
- Institute
for the Promotion of General Graduate Education (IPGE), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
- Research
Center for Organic Electronics (ROEL), Yamagata
University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Kuniaki Nagamine
- Graduate
School of Organic Materials Science, Yamagata
University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
- Research
Center for Organic Electronics (ROEL), Yamagata
University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Shizuo Tokito
- Graduate
School of Organic Materials Science, Yamagata
University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
- Research
Center for Organic Electronics (ROEL), Yamagata
University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| |
Collapse
|