1
|
Li Y, Jia Y, Li K, Tian R, Lu C. Electrochemiluminescence Monitoring on the Photodegraded Radicals from Aromatic Polymers. Anal Chem 2025; 97:10236-10243. [PMID: 40331565 DOI: 10.1021/acs.analchem.5c00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Monitoring on the radicals in the early stage of polymer degradation is essential to unveil the degradation mechanism and achieve rational management of polymers. However, it is challenging to provide a sensitive monitoring on the radicals in the early stage degradation of polymers, especially for the nonemissive radicals. In this contribution, we proposed electrochemiluminescence (ECL) to monitor the radical behaviors in the early stage degradation of aromatic polymers. It was disclosed that carbon-centered radicals were generated in the photodegraded polymers, facilitating the formation of hydroxyl and superoxide anion radicals. Accordingly, ECL intensities of the photodegraded polymers were continuously promoted with the prolonged phototreatment from 0 to 12 h. In comparison, obvious signals could only be detected after a long-term phototreatment by the conventional electron spin resonance measurements. Additionally, thermal treatment showed no profound effect on the ECL promotion for the aromatic polymers due to the different radical reaction pathways. Therefore, we have realized sensitive monitoring on the radicals in the early stage degradation of aromatic polymers, providing valuable information for the radical reaction mechanism of polymer degradation evolution.
Collapse
Affiliation(s)
- Yujie Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yunxiu Jia
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Kaitao Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Rui Tian
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou 324000, China
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Pingyuan Labortary, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou 324000, China
| |
Collapse
|
2
|
Ren H. Graphene and Its Derivatives for Electrochemical Sensing. SENSORS (BASEL, SWITZERLAND) 2025; 25:1993. [PMID: 40218506 PMCID: PMC11991121 DOI: 10.3390/s25071993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/11/2025] [Accepted: 03/20/2025] [Indexed: 04/14/2025]
Abstract
As a typical two-dimensional material, graphene and its derivatives exhibit many excellent properties, such as large specific surface area, electrical properties, and stability. Along with its derivatives, particularly graphene oxide (GO) and reduced graphene oxide (rGO), graphene materials have been studied in various fields due to the presence of aromatic ring, free π-π electron and reactive functional groups. This review focuses firstly on the synthesis methods of graphene and its derivatives along with their properties, followed by a discussion of the applications of their served as functional units in electrochemical sensing. Finally, this review describes the challenges, strategies, and outlooks on future developments.
Collapse
Affiliation(s)
- Haoliang Ren
- School of Natural Science, University of Manchester, Oxford Road, Manchester M139PL, UK
| |
Collapse
|
3
|
Li Y, Liu S, Feng F, Li Y, Han Y, Tong X, Gao X. Preparation and Characterization of Graphene Oxide/Carbon Nanotube/Polyaniline Composite and Conductive and Anticorrosive Properties of Its Waterborne Epoxy Composite Coatings. Polymers (Basel) 2024; 16:2641. [PMID: 39339105 PMCID: PMC11435755 DOI: 10.3390/polym16182641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
The organic coating on the surface is common and the most effective method to prevent metal materials from corrosion. However, the corrosive medium can penetrate the metal surface via micropores, and electrons cannot transfer in the pure resin coatings. In this paper, a new type of anticorrosive and electrically conductive composite coating filled with graphene oxide/carbon nanotube/polyaniline (GO/CNT/PANI) nanocomposites was successfully prepared by in situ polymerization of aniline (AN) on the surface of GO and CNT and using waterborne epoxy resin (WEP) as film-forming material. The structure and morphology of the composite were characterized using a series of characterization methods. The composite coatings were comparatively examined through resistivity, potentiodynamic polarization curves, electrochemical impedance spectroscopy (EIS), and salt spray tests. The results show that the GO/CNT/PANI/WEP composite coating exhibits excellent corrosion resistance for metal substrates and good conductivity when the mass fraction of GO/CNT/PANI is 3.5%. It exhibits a lower corrosion current density of 4.53 × 10-8 A·cm-2 and a higher electrochemical impedance of 3.84 × 106 Ω·cm2, while only slight corrosion occurred after 480 h in the salt spray test. The resistivity of composite coating is as low as 2.3 × 104 Ω·cm. The composite coating possesses anticorrosive and electrically conductive properties based on the synergistic effect of nanofillers and expands the application scope in grounding grids and oil storage tank protection fields.
Collapse
Affiliation(s)
- Yufeng Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China (X.G.)
- College of Light Industry and Textile, Qiqihar University, Qiqihar 161006, China
| | - Shibo Liu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China (X.G.)
| | - Feng Feng
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China (X.G.)
| | - Yiming Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China (X.G.)
| | - Yahui Han
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China (X.G.)
| | - Xinyang Tong
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China (X.G.)
| | - Xiaohui Gao
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China (X.G.)
| |
Collapse
|
4
|
Chaudhary Y, Suman S, Rakesh B, Ojha GP, Deshpande U, Pant B, Sankaran KJ. Boron and Nitrogen Co-Doped Porous Graphene Nanostructures for the Electrochemical Detection of Poisonous Heavy Metal Ions. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:806. [PMID: 38727400 PMCID: PMC11085509 DOI: 10.3390/nano14090806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/21/2024] [Accepted: 04/26/2024] [Indexed: 05/12/2024]
Abstract
Heavy metal poisoning has a life-threatening impact on the human body to aquatic ecosystems. This necessitates designing a convenient green methodology for the fabrication of an electrochemical sensor that can detect heavy metal ions efficiently. In this study, boron (B) and nitrogen (N) co-doped laser-induced porous graphene (LIGBN) nanostructured electrodes were fabricated using a direct laser writing technique. The fabricated electrodes were utilised for the individual and simultaneous electrochemical detection of lead (Pb2+) and cadmium (Cd2+) ions using a square wave voltammetry technique (SWV). The synergistic effect of B and N co-doping results in an improved sensing performance of the electrode with better sensitivity of 0.725 µA/µM for Pb2+ and 0.661 µA/µM for Cd2+ ions, respectively. Moreover, the sensing electrode shows a low limit of detection of 0.21 µM and 0.25 µM for Pb2+ and Cd2+ ions, with wide linear ranges from 8.0 to 80 µM for Pb2+ and Cd2+ ions and high linearity of R2 = 0.99 in case of simultaneous detection. This rapid and facile method of fabricating heteroatom-doped porous graphene opens a new avenue in electrochemical sensing studies to detect various hazardous metal ions.
Collapse
Affiliation(s)
- Yogesh Chaudhary
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, India; (Y.C.); (S.S.); (B.R.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shradha Suman
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, India; (Y.C.); (S.S.); (B.R.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Benadict Rakesh
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, India; (Y.C.); (S.S.); (B.R.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Gunendra Prasad Ojha
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, Wanju 55338, Republic of Korea;
| | - Uday Deshpande
- UGC-DAE Consortium for Scientific Research, Khandwa Road, Indore 452001, India;
| | - Bishweshwar Pant
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, Wanju 55338, Republic of Korea;
| | - Kamatchi Jothiramalingam Sankaran
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, India; (Y.C.); (S.S.); (B.R.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
5
|
Kammoun H, Ossonon BD, Tavares AC. Nitrogen-Doped Graphene Materials with High Electrical Conductivity Produced by Electrochemical Exfoliation of Graphite Foil. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:123. [PMID: 38202578 PMCID: PMC10780345 DOI: 10.3390/nano14010123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/19/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024]
Abstract
Nitrogen-doped graphene-based materials are of utmost importance in sensing and energy conversion devices due to their unique physicochemical properties. However, the presence of defects such as pyrrolic nitrogen and oxygenated functional groups reduces their electrical conductivity. Herein, a two-step approach based on the electrochemical exfoliation of graphite foils in aqueous mixed electrolytes followed by thermal reduction at 900 °C is used to prepare high-quality few layers of N-doped graphene-based materials. The exfoliations were conducted in 0.1 M (NH4)2SO4 or H2SO4 and HNO3 (5 mM or 0.1 M) electrolytes mixtures and the HNO3 vol% varied. Chemical analysis demonstrated that the as-prepared graphene oxides contain nitro and amine groups. Thermal reduction is needed for substitutional N-doping. Nitrogen and oxygen surface concentrations vary between 0.23-0.96% and 3-8%, respectively. Exfoliation in (NH4)2SO4 and/or 5 mM HNO3 favors the formation of pyridinic-N (10-40% of the total N), whereas 1 M HNO3 favors the formation of graphitic-N (≈60%). The electrical conductivity ranges between 166-2705 Scm-1. Raman spectroscopy revealed a low density of defects (ID/IG ratio between 0.1 and 0.7) and that most samples are composed of mono-to-bilayer graphene-based materials (IG/I2D integrated intensities ratio). Structural and compositional stability of selected samples after storage in air for three months is demonstrated. These results confirm the high quality of the synthesized undoped and N-doped graphene-type materials.
Collapse
Affiliation(s)
| | | | - Ana C. Tavares
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, QC J3X 1P7, Canada; (H.K.); (B.D.O.)
| |
Collapse
|
6
|
Rahman MO, Nor NBM, Sawaran Singh NS, Sikiru S, Dennis JO, Shukur MFBA, Junaid M, Abro GEM, Siddiqui MA, Al-Amin M. One-Step Solvothermal Synthesis by Ethylene Glycol to Produce N-rGO for Supercapacitor Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:666. [PMID: 36839033 PMCID: PMC9960698 DOI: 10.3390/nano13040666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Graphene and its derivatives have emerged as peerless electrode materials for energy storage applications due to their exclusive electroactive properties such as high chemical stability, wettability, high electrical conductivity, and high specific surface area. However, electrodes from graphene-based composites are still facing some substantial challenges to meet current energy demands. Here, we applied one-pot facile solvothermal synthesis to produce nitrogen-doped reduced graphene oxide (N-rGO) nanoparticles using an organic solvent, ethylene glycol (EG), and introduced its application in supercapacitors. Electrochemical analysis was conducted to assess the performance using a multi-channel electrochemical workstation. The N-rGO-based electrode demonstrates the highest specific capacitance of 420 F g-1 at 1 A g-1 current density in 3 M KOH electrolyte with the value of energy (28.60 Whkg-1) and power (460 Wkg-1) densities. Furthermore, a high capacitance retention of 98.5% after 3000 charge/discharge cycles was recorded at 10 A g-1. This one-pot facile solvothermal synthetic process is expected to be an efficient technique to design electrodes rationally for next-generation supercapacitors.
Collapse
Affiliation(s)
- Mohammad Obaidur Rahman
- Department of Electrical & Electronic Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| | - Nursyarizal Bin Mohd Nor
- Department of Electrical & Electronic Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| | - Narinderjit Singh Sawaran Singh
- Faculty of Data Science and Information Technology (FDSIT), INTI International University, Persiaran Perdana BBN, Putra Nilai, Nilai 71800, Negeri Sembilan, Malaysia
| | - Surajudeen Sikiru
- Centre for Subsurface Imaging, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| | - John Ojur Dennis
- Department of Fundamental & Applied Science, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
- Centre of Innovative Nanostructure and Nanodevices (COINN), Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| | - Muhammad Fadhlullah bin Abd. Shukur
- Department of Fundamental & Applied Science, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
- Centre of Innovative Nanostructure and Nanodevices (COINN), Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| | - Muhammad Junaid
- Department of Electrical & Electronic Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
- Department of Electronic Engineering, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta 87300, Balochistan, Pakistan
| | - Ghulam E. Mustafa Abro
- Department of Electrical & Electronic Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| | - Muhammad Aadil Siddiqui
- Department of Electrical & Electronic Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| | - Md Al-Amin
- The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
7
|
Ayyubov I, Tálas E, Berghian-Grosan C, Románszki L, Borbáth I, Pászti Z, Szegedi Á, Mihály J, Vulcu A, Tompos A. Nitrogen doped carbonaceous materials as platinum free cathode electrocatalysts for oxygen reduction reaction (ORR). REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-022-02331-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractComparison of physicochemical properties and electrocatalytic behavior of different N-doped carbonaceous materials as potential catalysts for oxygen reduction reaction (ORR) was attended. Ball-milling of graphite with melamine and solvothermal treatment of graphite oxide, graphene nanoplatelets (GNP) with ammonia were used as preparation methods. Elemental analysis and N2 physisorption measurements revealed the synthesis of N-doped materials with strongly different morphological parameters. Contact angle measurements proved that all three samples had good wettability properties. According to analysis of XRD data and Raman spectra a higher nitrogen concentration corresponded to a smaller size of crystallites of the N-doped carbonaceous material. Surface total N content determined by XPS and bulk N content assessed by elemental analysis were close, indicating homogenous inclusion of N in all samples. Rotating disc electrode tests showed that these N-doped materials weremuch less active in acidic medium than in an alkaline environment. Although the presence of in-plane N species is regarded to be advantageous for the ORR activity, no particular correlation was found in these systems with any type of N species. According to Koutecky–Levich analysis, both the N-containing carbonaceous materials and the reference Pt/C catalyst displayed a typical one-step, four-electron ORR route. Both ball-milled sample with high N-content but with low SSA and solvothermally synthesized N-GNP with high SSA but low N content showed significant ORR activity. It could be concluded that beside the total N content other parameters such as SSA, pore structure, structural defects, wettability were also essential for achieving high ORR activity.
Collapse
|
8
|
Three-dimensional network of nitrogen-doped carbon matrix-encapsulated Si nanoparticles/carbon nanofibers hybrids for lithium-ion battery anodes with excellent capability. Sci Rep 2022; 12:16002. [PMID: 36163350 PMCID: PMC9512820 DOI: 10.1038/s41598-022-20026-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 09/07/2022] [Indexed: 12/01/2022] Open
Abstract
Three-dimensionally structured silicon (Si)–carbon (C) nanocomposites have great potential as anodes in lithium-ion batteries (LIBs). Here, we report a Nitrogen-doped graphene/carbon-encapsulated Si nanoparticle/carbon nanofiber composite (NG/C@Si/CNF) prepared by methods of surface modification, electrostatic self-assembly, cross-linking with heat treatment, and further carbonization as a potential high-performance anode for LIBs. The N-doped C matrix wrapped around Si nanoparticles improved the electrical conductivity of the composites and buffered the volume change of Si nanoparticles during lithiation/delithiation. Uniformly dispersed CNF in composites acted as conductive networks for the fast transport of ions and electrons. The entire tightly connected organic material of NG/C@Si and CNF prevented the crushing and shedding of particles and maintained the integrity of the electrode structure. The NG/C@Si/CNF composite exhibited better rate capability and cycling performance compared with the other electrode materials. After 100 cycles, the electrode maintained a high reversible specific capacity of 1371.4 mAh/g.
Collapse
|
9
|
Niculae AR, Stefan-van Staden RI, van Staden JF, Georgescu State R. Sulfur-Doped Graphene-Based Electrochemical Sensors for Fast and Sensitive Determination of (R)-(+)-Limonene from Beverages. SENSORS (BASEL, SWITZERLAND) 2022; 22:5851. [PMID: 35957408 PMCID: PMC9371248 DOI: 10.3390/s22155851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Two sensors based on sulfur-doped graphene, a gold nanoparticle paste modified with 5,10,15,20-tetraphenyl-21H,23H-porphine and 5,10,15,20-tetrakis (pentafluorophenyl chloride)-21H,23H-iron (III) porphyrin, were proposed for the determination of R-limonene in beverages (triple sec liqueur and limoncello). Differential pulse voltammetry was the method used to characterize and validate the proposed sensors. The response characteristics showed that the detection limits for both sensors were 3 × 10-6 mol L-1, while the quantification limits were 1 × 10-5 mol L-1. Both sensors can be used to determine R-limonene in a concentration range between 1 × 10-5-6 × 10-4 mol L-1 for TPP/AuNPs-S-Gr and 1 × 10-5-1 × 10-3 mol L-1 for Fe(TPFPP)Cl/AuNPs-S-Gr. The highest sensitivity (0.7068 µA/mol L-1) was recorded when the TPP/AuNPs-S-Gr sensor was used, proving that the electrocatalytic effect of this electrocatalyst is higher compared to that of Fe(TPFPP)Cl/AuNPs-S-Gr. High recoveries (values greater than 99.00%) and low RSD values (%) (below 5.00%) were recorded for both sensors when used to determine R-limonene in triple sec liqueur and limoncello.
Collapse
Affiliation(s)
- Andreea-Roxana Niculae
- Laboratory of Electrochemistry and PATLAB, National Institute of Research for Electrochemistry and Condensed Matter, 202 Splaiul Independentei Str., 060021 Bucharest, Romania
- Faculty of Chemical Engineering and Biotechnologies, Politehnica University of Bucharest, 060021 Bucharest, Romania
| | - Raluca-Ioana Stefan-van Staden
- Laboratory of Electrochemistry and PATLAB, National Institute of Research for Electrochemistry and Condensed Matter, 202 Splaiul Independentei Str., 060021 Bucharest, Romania
- Faculty of Chemical Engineering and Biotechnologies, Politehnica University of Bucharest, 060021 Bucharest, Romania
| | - Jacobus Frederick van Staden
- Laboratory of Electrochemistry and PATLAB, National Institute of Research for Electrochemistry and Condensed Matter, 202 Splaiul Independentei Str., 060021 Bucharest, Romania
| | - Ramona Georgescu State
- Laboratory of Electrochemistry and PATLAB, National Institute of Research for Electrochemistry and Condensed Matter, 202 Splaiul Independentei Str., 060021 Bucharest, Romania
| |
Collapse
|
10
|
Mokoloko LL, Matsoso JB, Antonatos N, Mazánek V, Moreno BD, Forbes RP, Barrett DH, Sofer Z, Coville NJ. From 0D to 2D: N-doped carbon nanosheets for detection of alcohol-based chemical vapours. RSC Adv 2022; 12:21440-21451. [PMID: 35975088 PMCID: PMC9346501 DOI: 10.1039/d2ra03931a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 07/12/2022] [Indexed: 12/03/2022] Open
Abstract
The application of N-doped carbon nanosheets, with and without embedded carbon dots, as active materials for the room temperature chemoresistive detection of methanol and/or ethanol is presented. The new carbons were made by converting 0D N-doped carbon dots (NCDs) to 2D nitrogen-doped carbon nanosheets by heat treatment (200–700 °C). The nanosheets exhibited a lateral size of ∼3 μm and a thickness of ∼12 nm at the highest annealing temperature. Both Raman and TEM analyses showed morphological transitions of the dots to the sheets, whilst XPS analysis revealed transformation of the N-bonding states with increasing temperature. PDF analysis confirmed the presence of defective carbon sheets. Room temperature screening of the chemical vapours of two alcohols (methanol and ethanol), revealed that the structure and the type of N-configuration influenced the detection of the chemical vapours. For instance, the lateral size of the nanosheets and the high charge density N-configurations promoted detection of both methanol and ethanol vapours at good sensitivity (−16.8 × 10−5 ppm−1EtOH and 1.2 × 10−5 ppm−1MeOH) and low LoD (∼44 ppmEtOH and ∼30.3 ppmMeOH) values. The study showed that the composite nature as well as the large basal area of the carbon nanosheets enabled generation of adequate defective sites that facilitated easy adsorption of the VOC analyte molecules, thereby eliminating the need to use conducting polymers or the formation of porous molecular frameworks for the alcohol detection. 2D layered carbon nanostructures made by annealing 0D carbon dots, have been used as ethanol/methanol sensors.![]()
Collapse
Affiliation(s)
- Lerato L Mokoloko
- The Molecular Sciences Institute, School of Chemistry. University of the Witwatersrand Johannesburg 2050 South Africa .,DSI-NRF Centre of Excellence in Catalysis (cchange), University of the Witwatersrand Johannesburg 2050 South Africa
| | - Joyce B Matsoso
- Department of Inorganic Chemistry, University of Chemistry and Technology - Prague Technická 5, Dejvice 166 28 Praha 6 Czech Republic
| | - Nikolas Antonatos
- Department of Inorganic Chemistry, University of Chemistry and Technology - Prague Technická 5, Dejvice 166 28 Praha 6 Czech Republic
| | - Vlastimil Mazánek
- Department of Inorganic Chemistry, University of Chemistry and Technology - Prague Technická 5, Dejvice 166 28 Praha 6 Czech Republic
| | - Beatriz D Moreno
- Canadian Light Source Inc. 44 Innovation Boulevard Saskatoon SK S7N 2V3 Canada
| | - Roy P Forbes
- The Molecular Sciences Institute, School of Chemistry. University of the Witwatersrand Johannesburg 2050 South Africa .,DSI-NRF Centre of Excellence in Catalysis (cchange), University of the Witwatersrand Johannesburg 2050 South Africa
| | - Dean H Barrett
- The Molecular Sciences Institute, School of Chemistry. University of the Witwatersrand Johannesburg 2050 South Africa
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology - Prague Technická 5, Dejvice 166 28 Praha 6 Czech Republic
| | - Neil J Coville
- The Molecular Sciences Institute, School of Chemistry. University of the Witwatersrand Johannesburg 2050 South Africa .,DSI-NRF Centre of Excellence in Catalysis (cchange), University of the Witwatersrand Johannesburg 2050 South Africa
| |
Collapse
|
11
|
Nitrogen-Doped Graphene-Based Sensor for Electrochemical Detection of Piroxicam, a NSAID Drug for COVID-19 Patients. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10020047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Nitrogen-doped graphene (NGr) was synthesized by the hydrothermal method using urea as a reducing and doping agent for graphene oxide (GO). The crystalline structure of GO was revealed by the XRD intense peak recorded at 2θ = 11.4°, indicating that the interlayer distance within the structure was large (d = 0.77 nm), and the number of layers (n) was 9. Further, the transformation of GO in NGr also led to the decrease in the interlayer distance and number of layers (d = 0.387 nm; n = 3). As indicated by elemental analysis, the concentration of nitrogen in the NGr sample was 6 wt%. Next, the comparison between the performance of bare GC and the graphene-modified electrode (NGr/GC) towards piroxicam (PIR) detection was studied. Significant differences were observed between the two electrodes. Hence, in the case of bare GC, the oxidation signal of PIR was very broad and appeared at a high potential (+0.7 V). In contrast, the signal recorded with the NGr/GC electrode was significantly higher (four times) and shifted towards lower potentials (+0.54 V), proving the electro-catalytic effect of nitrogen-doped graphene. The NGr/GC electrode was also tested for its ability to detect piroxicam in pharmaceutical drugs (Flamexin), giving excellent recoveries.
Collapse
|
12
|
Heteroatom Modified Hybrid Carbon Quantum Dots Derived from Cucurbita pepo for the Visible Light Driven Photocatalytic Dye Degradation. Top Catal 2022. [DOI: 10.1007/s11244-022-01581-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
13
|
Zhang L, Jiang D, Shan X, Du X, Wei M, Zhang Y, Chen Z. Visible light-driven self-powered aptasensors for ultrasensitive Microcystin-LR detection based on the carrier density effect of N-doped graphene hydrogel/hematite Schottky junctions. Analyst 2021; 146:6220-6227. [PMID: 34523620 DOI: 10.1039/d1an01462e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this work, a novel visible light-driven self-powered photoelectrochemical (PEC) platform was designed based on 3D N-doped graphene hydrogel/hematite nanocomposites (NGH/Fe2O3) via a facile one-pot hydrothermal route. The coupling NGH with Fe2O3 could generate a Schottky junction, which promoted the separation of charges. Moreover, Mott-Schottky measurements validated that the carrier concentration achieved by NGH/Fe2O3 was about 3.4 × 103 times in comparison to that of pure Fe2O3, which was beneficial for efficient charge transfer. Owing to the carrier density effect and Schottky junction, the photocurrent of the as-fabricated NGH/Fe2O3 nanocomposites was 6.9-fold higher than that of pure Fe2O3. On the basis of such excellent Schottky junctions, an ultrasensitive visible light-induced self-powered PEC aptasensor was developed using a Microcystin-LR (MC-LR) aptamer. The as-fabricated PEC aptasensor displayed good analytical performance toward MC-LR detection in terms of wide linear range (1 pM-5 nM), low detection limit (0.23 pM, S/N = 3), excellent selectivity and high stability. This new strategy can provide a way for regulating nanostructures for more sensitive PEC sensors by increasing the carrier density.
Collapse
Affiliation(s)
- Linhua Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Ding Jiang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China. .,Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Xueling Shan
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China. .,Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Xiaojiao Du
- Oakland International Associated Laboratory, School of Photoelectric Engineering, Changzhou Institute of Technology, Changzhou, Jiangsu, 213032, P. R. China
| | - Meng Wei
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Yude Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Zhidong Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China. .,Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| |
Collapse
|
14
|
Zhou C, Wang C, Fan G, Deng L. DFT Study on Capacitive Property of Composites Built by Phosphomolybdic Acid with Nitrogen-Doped Graphene. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02081-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Neri G, Fazio E, Nostro A, Mineo PG, Scala A, Rescifina A, Piperno A. Shedding Light on the Chemistry and the Properties of Münchnone Functionalized Graphene. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1629. [PMID: 34206184 PMCID: PMC8307402 DOI: 10.3390/nano11071629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/06/2021] [Accepted: 06/18/2021] [Indexed: 12/23/2022]
Abstract
Münchnones are mesoionic oxazolium 5-oxides with azomethine ylide characteristics that provide pyrrole derivatives by a 1,3-dipolar cycloaddition (1,3-DC) reaction with acetylenic dipolarophiles. Their reactivity was widely exploited for the synthesis of small molecules, but it was not yet investigated for the functionalization of graphene-based materials. Herein, we report our results on the preparation of münchnone functionalized graphene via cycloaddition reactions, followed by the spontaneous loss of carbon dioxide and its further chemical modification to silver/nisin nanocomposites to confer biological properties. A direct functionalization of graphite flakes into few-layers graphene decorated with pyrrole rings on the layer edge was achieved. The success of functionalization was confirmed by micro-Raman and X-ray photoelectron spectroscopies, scanning transmission electron microscopy, and thermogravimetric analysis. The 1,3-DC reactions of münchnone dipole with graphene have been investigated using density functional theory to model graphene. Finally, we explored the reactivity and the processability of münchnone functionalized graphene to produce enriched nano biomaterials endowed with antimicrobial properties.
Collapse
Affiliation(s)
- Giulia Neri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (G.N.); (A.N.); (A.S.)
| | - Enza Fazio
- Department of Mathematical and Computational Sciences, Physics Science and Earth Science, University of Messina, V.le F. Stagno d’Alcontres 31, I-98166 Messina, Italy
| | - Antonia Nostro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (G.N.); (A.N.); (A.S.)
| | - Placido Giuseppe Mineo
- Department of Chemical Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy;
| | - Angela Scala
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (G.N.); (A.N.); (A.S.)
| | - Antonio Rescifina
- Department of Drug and Health Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy
| | - Anna Piperno
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (G.N.); (A.N.); (A.S.)
| |
Collapse
|
16
|
Kamedulski P, Lukaszewicz JP, Witczak L, Szroeder P, Ziolkowski P. The Importance of Structural Factors for the Electrochemical Performance of Graphene/Carbon Nanotube/Melamine Powders towards the Catalytic Activity of Oxygen Reduction Reaction. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2448. [PMID: 34065055 PMCID: PMC8125890 DOI: 10.3390/ma14092448] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/26/2021] [Accepted: 05/06/2021] [Indexed: 01/29/2023]
Abstract
In this paper, we show the carbonization of binary composites consisting of graphene nanoplatelets and melamine (GNP/MM), multi-walled carbon nanotubes and melamine (CNT/MM) and trinary composites containing GNP, CNT, and MM. Additionally, the manuscript presents results on the influence of structural factors for the electrochemical performance of carbon composites on their catalytic activity. This study contributes to the wide search and design of novel hybrid carbon composites for electrochemical applications. We demonstrate that intensive nitrogen atom insertion is not the governing factor since hybrid system modifications and porous structure sometimes play a more crucial role in the tailoring of electrochemical properties of the carbon hybrids seen as a noble metal-free alternative to traditional electrode materials. Additionally, HRTEM and Raman spectra study allowed for the evaluation of the quality of the obtained hybrid materials.
Collapse
Affiliation(s)
- Piotr Kamedulski
- Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Toruń, Poland;
| | - Jerzy P. Lukaszewicz
- Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Toruń, Poland;
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń, Poland
| | - Lukasz Witczak
- Institute of Physics, Kazimierz Wielki University, Powstańców Wielkopolskich 2, 85-090 Bydgoszcz, Poland; (L.W.); (P.S.)
| | - Pawel Szroeder
- Institute of Physics, Kazimierz Wielki University, Powstańców Wielkopolskich 2, 85-090 Bydgoszcz, Poland; (L.W.); (P.S.)
| | | |
Collapse
|
17
|
Minta D, González Z, Wiench P, Gryglewicz S, Gryglewicz G. N-Doped Reduced Graphene Oxide/Gold Nanoparticles Composite as an Improved Sensing Platform for Simultaneous Detection of Dopamine, Ascorbic Acid, and Uric Acid. SENSORS 2020; 20:s20164427. [PMID: 32784787 PMCID: PMC7472481 DOI: 10.3390/s20164427] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/25/2022]
Abstract
Gold nanoparticles (AuNPs) were homogeneously electrodeposited on nitrogen-doped reduced graphene oxide (N-rGO) to modify a glassy carbon electrode (GCE/N-rGO-Au) in order to improve the simultaneous detection of dopamine (DA), ascorbic acid (AA), and uric acid (UA). N-rGO was prepared by the hydrothermal treatment of graphene oxide (GO) and urea at 180 °C for 12 h. AuNPs were subsequently electrodeposited onto the surface of GCE/N-rGO using 1 mM HAuCl4 solution. The morphology and chemical composition of the synthesized materials were characterized by field-emission scanning electron microscopy and X-ray photoelectron spectroscopy. The electrochemical performance of the modified electrodes was investigated through cyclic voltammetry and differential pulse voltammetry measurements. Compared to GCE/rGO-Au, GCE/N-rGO-Au exhibited better electrochemical performance towards the simultaneous detection of the three analytes due to the more homogeneous distribution of the metallic nanoparticles as a result of more efficient anchoring on the N-doped areas of the graphene structure. The GCE/N-rGO-Au-based sensor operated in a wide linear range of DA (3–100 µM), AA (550–1500 µM), and UA (20–1000 µM) concentrations with a detection limit of 2.4, 58, and 8.7 µM, respectively, and exhibited satisfactory peak potential separation values of 0.34 V (AA-DA), 0.20 V, (DA-UA) and 0.54 V (AA-UA). Remarkably, GCE/N-rGO-Au showed a very low detection limit of 385 nM towards DA, not being susceptible to interference, and maintained 90% of its initial electrochemical signal after one month, indicating an excellent long-term stability.
Collapse
Affiliation(s)
- Daria Minta
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wrocław University of Science and Technology, Gdańska 7/9, 50-344 Wrocław, Poland; (D.M.); (P.W.)
| | - Zoraida González
- Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, Francisco Pintado Fe 26, 33011 Oviedo, Spain;
| | - Piotr Wiench
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wrocław University of Science and Technology, Gdańska 7/9, 50-344 Wrocław, Poland; (D.M.); (P.W.)
| | - Stanisław Gryglewicz
- Department of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372 Wrocław, Poland;
| | - Grażyna Gryglewicz
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wrocław University of Science and Technology, Gdańska 7/9, 50-344 Wrocław, Poland; (D.M.); (P.W.)
- Correspondence: ; Tel.: +48-71-320-6398; Fax: +48-71-320-6506
| |
Collapse
|
18
|
CO Tolerance and Stability of Graphene and N-Doped Graphene Supported Pt Anode Electrocatalysts for Polymer Electrolyte Membrane Fuel Cells. Catalysts 2020. [DOI: 10.3390/catal10060597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Pt electrocatalysts supported on pristine graphene nanosheets (GNS) and nitrogen-doped graphene nanoplatelets (N-GNP) were prepared through the ethylene glycol process, and a comparison of their CO tolerance and stability as anode materials in polymer electrolyte membrane fuel cells (PEMFCs) with those of the conventional carbon (C)-supported Pt was made. Repetitive potential cycling in a half cell showed that Pt/GNS catalysts have the highest stability, in terms of the highest sintering resistance (lowest particle growth) and the lowest electrochemically active surface area loss. By tests in PEMFCs, the Pt/N-GNP catalyst showed the highest CO tolerance, while the poisoning resistance of Pt/GNS was lower than that of Pt/C. The higher CO tolerance of Pt/N-GNP than that of Pt/GNS was ascribed to the presence of a defect in graphene, generated by N-doping, decreasing CO adsorption energy.
Collapse
|
19
|
Feng J, Zhang Y. The oxygen reduction reaction of two electron transfer of nitrogen-doped carbon in the electro-Fenton system. NEW J CHEM 2020. [DOI: 10.1039/d0nj03298k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Degradation mechanism of ORR for the NGO-Ti mesh cathode material in the EF process.
Collapse
Affiliation(s)
- Jiayi Feng
- State Key Laboratory of Separation Membranes and Membrane Processes
- Tiangong University
- Tianjin 300387
- China
- School of Environmental Science and Engineering
| | - Yonggang Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes
- Tiangong University
- Tianjin 300387
- China
- School of Environmental Science and Engineering
| |
Collapse
|