1
|
Prokopiuk A, Wojtas J. Accelerating the Diagnosis of Pandemic Infection Based on Rapid Sampling Algorithm for Fast-Response Breath Gas Analyzers. SENSORS (BASEL, SWITZERLAND) 2024; 24:6164. [PMID: 39409204 PMCID: PMC11478416 DOI: 10.3390/s24196164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024]
Abstract
This paper presents a novel technique for extracting the alveolar part of human breath. Gas exchange occurs between blood and inhaled air in the alveoli, which is helpful in medical diagnostics based on breath analysis. Consequently, the alveolar portion of the exhaled air contains specific concentrations of endogenous EVOC (exogenous volatile organic compound), which, among other factors, depend on the person's health condition. As this part of the breath enables the screening for diseases, accurate sample collection for testing is crucial. Inaccurate sampling can significantly alter the composition of the specimen, alter the concentration of EVOC (biomarkers) and adversely affect the diagnosis. Furthermore, the volume of alveolar air is minimal (usually <350 mL), especially in the case of people affected by respiratory system problems. For these reasons, precise sampling is a key factor in the effectiveness of medical diagnostic systems. A new technique ensuring high accuracy and repeatability is presented in the article. It is based on analyzing the changes in carbon dioxide concentration in human breath using a fast and compensated non-dispersive infrared (NDIR) sensor and the simple moving adjacent average (SMAA) algorithm. Research has shown that this method accurately identifies exhalation phases with an uncertainty as low as 20 ms. This provides around 350 ms of breath duration for carrying out additional stages of the diagnostic process using various types of analyzers.
Collapse
Affiliation(s)
| | - Jacek Wojtas
- Institute of Optoelectronics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland
| |
Collapse
|
2
|
Kwiatkowski A, Borys S, Sikorska K, Drozdowska K, Smulko JM. Clinical studies of detecting COVID-19 from exhaled breath with electronic nose. Sci Rep 2022; 12:15990. [PMID: 36163492 PMCID: PMC9512806 DOI: 10.1038/s41598-022-20534-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
The COVID-19 pandemic has attracted numerous research studies because of its impact on society and the economy. The pandemic has led to progress in the development of diagnostic methods, utilizing the polymerase chain reaction (PCR) as the gold standard for coronavirus SARS-CoV-2 detection. Numerous tests can be used at home within 15 min or so but of with lower accuracy than PCR. There is still a need for point-of-care tests available for mass daily screening of large crowds in airports, schools, and stadiums. The same problem exists with fast and continuous monitoring of patients during their medical treatment. The rapid methods can use exhaled breath analysis which is non-invasive and delivers the result quite fast. Electronic nose can detect a cocktail of volatile organic com-pounds (VOCs) induced by virus infection and disturbed metabolism in the human body. In our exploratory studies, we present the results of COVID-19 detection in a local hospital by applying the developed electronic setup utilising commercial VOC gas sensors. We consider the technical problems noticed during the reported studies and affecting the detection results. We believe that our studies help to advance the proposed technique to limit the spread of COVID-19 and similar viral infections.
Collapse
Affiliation(s)
- Andrzej Kwiatkowski
- Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Sebastian Borys
- University Center of Maritime and Tropical Medicine, Powstania Styczniowego 9B, 81-519, Gdynia, Poland
| | - Katarzyna Sikorska
- University Center of Maritime and Tropical Medicine, Powstania Styczniowego 9B, 81-519, Gdynia, Poland.,Division of Tropical and Parasitic Diseases, Faculty of Health Sciences, Medical University of Gdańsk, Powstania Styczniowego 9B, 81-519, Gdynia, Poland
| | - Katarzyna Drozdowska
- Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Janusz M Smulko
- Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland.
| |
Collapse
|
3
|
Chien PJ, Suzuki T, Ye M, Toma K, Arakawa T, Iwasaki Y, Mitsubayashi K. Ultra-Sensitive Isopropanol Biochemical Gas Sensor (Bio-Sniffer) for Monitoring of Human Volatiles. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6827. [PMID: 33260380 PMCID: PMC7730524 DOI: 10.3390/s20236827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/26/2022]
Abstract
Our groups have previously developed a biochemical gas sensor to measure isopropanol (IPA) in exhaled air and have applied it for breath IPA investigation in healthy subjects and diabetes patients. In this study, the original bio-sniffer was modified with a series of components that improved the limit of detection (LOD). First, the modified IPA bio-sniffer used a C8855-type photomultiplier tube (PMT) that performed well in the photon sensitivity at the peak wavelength of nicotinamide adenine dinucleotide (NADH) fluorescence. Second, the multi-core bifurcated optical fiber, which incorporated 36 fibers to replace the previous dual-core type, enhanced the fluorescence collection. Third, the optical fiber probe was reinforced for greater width, and the flow-cell was redesigned to increase the area of the enzyme-immobilized membrane in contact with the air sample. These modifications lowered the detection limit to 0.5 ppb, a significant increase over the previous 1.0 ppb. Moreover, the modified bio-sniffer successfully analyzed the IPA concentration in exhaled air from a volunteer, which confirmed its capability for real-world sample detection. The modified bio-sniffer is more applicable to breath measurement and the detection of other extremely-low-concentration samples.
Collapse
Affiliation(s)
- Po-Jen Chien
- Institute of Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Rd., Nankang, Taipei 115, Taiwan;
| | - Takuma Suzuki
- Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8549, Japan;
| | - Ming Ye
- Department of Biomedical Devices and Instrumentation, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan; (M.Y.); (K.T.); (T.A.)
| | - Koji Toma
- Department of Biomedical Devices and Instrumentation, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan; (M.Y.); (K.T.); (T.A.)
| | - Takahiro Arakawa
- Department of Biomedical Devices and Instrumentation, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan; (M.Y.); (K.T.); (T.A.)
| | - Yasuhiko Iwasaki
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-Cho, Suita-Shi, Osaka 564-0836, Japan;
| | - Kohji Mitsubayashi
- Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8549, Japan;
- Department of Biomedical Devices and Instrumentation, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan; (M.Y.); (K.T.); (T.A.)
| |
Collapse
|