1
|
Topa-Skwarczyńska M, Jankowska M, Gruchała-Hałat A, Petko F, Galek M, Ortyl J. High-performance photoinitiating systems for new generation dental fillings. Dent Mater 2023; 39:729. [PMID: 37393151 DOI: 10.1016/j.dental.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/10/2023] [Accepted: 06/14/2023] [Indexed: 07/03/2023]
Abstract
OBJECTIVES To obtain new generation dental composites with improved performance properties compared to currently available dental fillings on the market and to determine the influence of new initiating systems on final product parameters such as degree of cure, hardness, color, and shrinkage. METHODS In order to verify the effectiveness of the developed initiating systems, typical spectroscopic, electrochemical, and kinetic studies using the real-time FT-IR method were shown. Moreover, paste dental fillings were prepared, the compositions were irradiated with the dental lamp, and the degrees of cross-linking were measured by Raman spectroscopy. The polymerization shrinkage was also determined using the rheometer. In addition, their hardness was examined on the Shore scale. Finally, the color analysis of the composites in the L*a*b* color space was compared with the VITA CLASSIC colorant. RESULTS It was shown that, due to their excellent spectroscopic and electrochemical properties, new quinazolin-2-one can act as co-initiators in cationic and radical photopolymerization. It was demonstrated that the most effective composite containing the initiator system in the form of 3-SCH3Ph-Q, IOD, MDEA, and an inorganic filler as nanometric silica and a bonding agent is cured more than 90% after just 1 cycle of dental lamp exposure (30 s), the hardness of the composite after curing on the Shor Scale is 82 ± 4, and the polymerization shrinkage is less than 2.8%. SIGNIFICANCE The article demonstrates effective new initiator systems as an alternative to CQ/amine for obtaining new-generation dental composites. The developed dental composites are a big competition to the currently used dental fillings on the market.
Collapse
Affiliation(s)
- Monika Topa-Skwarczyńska
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 30-155 Cracow, Poland; Photo4Chem Ltd., Lea 114, 30-133 Cracow, Poland.
| | - Magdalena Jankowska
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 30-155 Cracow, Poland
| | - Alicja Gruchała-Hałat
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 30-155 Cracow, Poland
| | - Filip Petko
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 30-155 Cracow, Poland; Photo HiTech Ltd., Bobrzyńskiego 14, 30-348 Cracow, Poland
| | - Mariusz Galek
- Photo HiTech Ltd., Bobrzyńskiego 14, 30-348 Cracow, Poland
| | - Joanna Ortyl
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 30-155 Cracow, Poland; Photo HiTech Ltd., Bobrzyńskiego 14, 30-348 Cracow, Poland; Photo4Chem Ltd., Lea 114, 30-133 Cracow, Poland.
| |
Collapse
|
2
|
Noworyta M, Topa-Skwarczyńska M, Jamróz P, Oksiuta D, Tyszka-Czochara M, Trembecka-Wójciga K, Ortyl J. Influence of the Type of Nanofillers on the Properties of Composites Used in Dentistry and 3D Printing. Int J Mol Sci 2023; 24:10549. [PMID: 37445729 DOI: 10.3390/ijms241310549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/09/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Photopolymerization is a growing field with an extensive range of applications and is environmentally friendly owing to its energy-efficient nature. Such light-assisted curing methods were initially used to cure the coatings. However, it has become common to use photopolymerization to produce 3D objects, such as bridges or dental crowns, as well as to cure dental fillings. In this study, polymer nanocomposites containing inorganic nanofillers (such as zinc nano-oxide and zinc nano-oxide doped with two wt.% aluminum, titanium nano-oxide, kaolin nanoclay, zirconium nano-oxide, aluminum nano-oxide, and silicon nano-oxide) were fabricated and studied using Real Time FT-IR to investigate the effects of these nanoadditives on the final conversion rates of the obtained nanocomposites. The effects of the fillers on the viscosity of the produced nanocomposites were also investigated, and 3D prints of the selected nanocomposites were presented.
Collapse
Affiliation(s)
- Małgorzata Noworyta
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
| | - Monika Topa-Skwarczyńska
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
| | - Paweł Jamróz
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
| | - Dawid Oksiuta
- Faculty of Mechanical Engineering, Cracow University of Technology, Jana Pawła II 37, 31-864 Cracow, Poland
| | | | - Klaudia Trembecka-Wójciga
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta 25, 30-059 Cracow, Poland
| | - Joanna Ortyl
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
- Photo4Chem Ltd., Lea 114, 30-133 Cracow, Poland
- Photo HiTech Ltd., Bobrzyńskiego 14, 30-348 Cracow, Poland
| |
Collapse
|
3
|
Szymaszek P, Tomal W, Świergosz T, Kamińska-Borek I, Popielarz R, Ortyl J. Review of quantitative and qualitative methods for monitoring photopolymerization reactions. Polym Chem 2023. [DOI: 10.1039/d2py01538b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Authomatic in-situ monitoring and characterization of photopolymerization.
Collapse
|
4
|
Topa-Skwarczyńska M, Świeży A, Krok D, Starzak K, Niezgoda P, Oksiuta B, Wałczyk W, Ortyl J. Novel Formulations Containing Fluorescent Sensors to Improve the Resolution of 3D Prints. Int J Mol Sci 2022; 23:10470. [PMID: 36142382 PMCID: PMC9504832 DOI: 10.3390/ijms231810470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/26/2022] Open
Abstract
Three-dimensional printing in SLA (stereolithography) and DLP (digital light processing) technologies has recently been experiencing a period of extremely rapid development. This is due to the fact that researchers recognise the many advantages of 3D printing, such as the high resolution and speed of the modelling and printing processes. However, there is still a search for new resin formulations dedicated to specific 3D printers allowing for high-resolution prints. Therefore, in the following paper, the effects of dyes such as BODIPY, europium complex, and Coumarin 1 added to light-cured compositions polymerised according to the radical mechanism on the photopolymerisation process speed, polymerisation shrinkage, and the final properties of the printouts were investigated. The kinetics of the photopolymerisation of light-cured materials using real-time FT-IR methods, as well as printouts that tangibly demonstrate the potential application of 3D printing technology in Industry 4.0, were examined. These studies showed that the addition of dyes has an effect on obtaining fluorescent prints with good resolution.
Collapse
Affiliation(s)
- Monika Topa-Skwarczyńska
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 30-155 Kraków, Poland
- Photo4Chem Ltd., Lea 114, 30-133 Kraków, Poland
| | - Andrzej Świeży
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 30-155 Kraków, Poland
- Photo HiTech Ltd., Bobrzyńskiego 14, 30-348 Kraków, Poland
| | - Dominika Krok
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 30-155 Kraków, Poland
| | - Katarzyna Starzak
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 30-155 Kraków, Poland
| | - Paweł Niezgoda
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 30-155 Kraków, Poland
- Photo4Chem Ltd., Lea 114, 30-133 Kraków, Poland
| | - Bartosz Oksiuta
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 30-155 Kraków, Poland
| | - Weronika Wałczyk
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 30-155 Kraków, Poland
| | - Joanna Ortyl
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 30-155 Kraków, Poland
- Photo4Chem Ltd., Lea 114, 30-133 Kraków, Poland
- Photo HiTech Ltd., Bobrzyńskiego 14, 30-348 Kraków, Poland
| |
Collapse
|
5
|
|
6
|
Topa-Skwarczyńska M, Galek M, Jankowska M, Morlet-Savary F, Graff B, Lalevée J, Popielarz R, Ortyl J. Development of the first panchromatic BODIPY-based one-component iodonium salts for initiating the photopolymerization processes. Polym Chem 2021. [DOI: 10.1039/d1py01263k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Herein, new iodonium salts based on a 4,4-difluoro-1,3,5,7,8-pentamethyl-4-bora-3a,4a-diaza-s-indecene (B-1) chromophore have been introduced to 3D printing applications.
Collapse
Affiliation(s)
- Monika Topa-Skwarczyńska
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
| | - Mariusz Galek
- Photo HiTech Ltd., Bobrzyńskiego 14, 30-348 Cracow, Poland
| | - Magdalena Jankowska
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
| | - Fabrice Morlet-Savary
- Institut de Science des Matériaux de Mulhouse IS2 M, UMR CNRS 7361, UHA, 15, rue Jean Starcky, Cedex 68057 Mulhouse, France
| | - Bernadette Graff
- Institut de Science des Matériaux de Mulhouse IS2 M, UMR CNRS 7361, UHA, 15, rue Jean Starcky, Cedex 68057 Mulhouse, France
| | - Jacques Lalevée
- Institut de Science des Matériaux de Mulhouse IS2 M, UMR CNRS 7361, UHA, 15, rue Jean Starcky, Cedex 68057 Mulhouse, France
| | - Roman Popielarz
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
| | - Joanna Ortyl
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
- Photo HiTech Ltd., Bobrzyńskiego 14, 30-348 Cracow, Poland
- Photo4Chem Ltd., Lea 114, 30-133 Cracow, Poland
| |
Collapse
|
7
|
Tomal W, Świergosz T, Pilch M, Kasprzyk W, Ortyl J. New horizons for carbon dots: quantum nano-photoinitiating catalysts for cationic photopolymerization and three-dimensional (3D) printing under visible light. Polym Chem 2021. [DOI: 10.1039/d1py00228g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Citric acid-based carbon dots (CDs) as nano-photoinitiating catalysts for 3D printing.
Collapse
Affiliation(s)
- Wiktoria Tomal
- Department of Biotechnology and Physical Chemistry
- Faculty of Chemical Engineering and Technology
- Cracow University of Technology
- 31-155 Kraków
- Poland
| | - Tomasz Świergosz
- Department of Analytical Chemistry
- Faculty of Chemical Engineering and Technology
- Cracow University of Technology
- 31-155 Kraków
- Poland
| | - Maciej Pilch
- Department of Biotechnology and Physical Chemistry
- Faculty of Chemical Engineering and Technology
- Cracow University of Technology
- 31-155 Kraków
- Poland
| | - Wiktor Kasprzyk
- Department of Biotechnology and Physical Chemistry
- Faculty of Chemical Engineering and Technology
- Cracow University of Technology
- 31-155 Kraków
- Poland
| | - Joanna Ortyl
- Department of Biotechnology and Physical Chemistry
- Faculty of Chemical Engineering and Technology
- Cracow University of Technology
- 31-155 Kraków
- Poland
| |
Collapse
|
8
|
Topa M, Ortyl J. Moving Towards a Finer Way of Light-Cured Resin-Based Restorative Dental Materials: Recent Advances in Photoinitiating Systems Based on Iodonium Salts. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4093. [PMID: 32942676 PMCID: PMC7560344 DOI: 10.3390/ma13184093] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/03/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023]
Abstract
The photoinduced polymerization of monomers is currently an essential tool in various industries. The photopolymerization process plays an increasingly important role in biomedical applications. It is especially used in the production of dental composites. It also exhibits unique properties, such as a short time of polymerization of composites (up to a few seconds), low energy consumption, and spatial resolution (polymerization only in irradiated areas). This paper describes a short overview of the history and classification of different typical monomers and photoinitiating systems such as bimolecular photoinitiator system containing camphorquinone and aromatic amine, 1-phenyl-1,2-propanedione, phosphine derivatives, germanium derivatives, hexaarylbiimidazole derivatives, silane-based derivatives and thioxanthone derivatives used in the production of dental composites with their limitations and disadvantages. Moreover, this article represents the challenges faced when using the latest inventions in the field of dental materials, with a particular focus on photoinitiating systems based on iodonium salts. The beneficial properties of dental composites cured using initiation systems based on iodonium salts have been demonstrated.
Collapse
Affiliation(s)
- Monika Topa
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
| | - Joanna Ortyl
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
- Photo HiTech Ltd., Bobrzyńskiego 14, 30-348 Cracow, Poland
| |
Collapse
|