1
|
Gaikwad P, Desai TR, Ghosh S, Gurnani C. Flexible Nanostructured NiS-Based Electrochemical Biosensor for Simultaneous Detection of DNA Nucleobases. ACS OMEGA 2025; 10:2561-2574. [PMID: 39895750 PMCID: PMC11780467 DOI: 10.1021/acsomega.4c07106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/17/2024] [Accepted: 11/25/2024] [Indexed: 02/04/2025]
Abstract
Herein, we demonstrate a one-step, scalable, solution-processed method for the growth of nickel sulfide (NiS) nanostructures using single-source precursors (SSPs) on a flexible substrate as a versatile framework for simultaneous detection of four DNA nucleobases. The as-grown NiS nanostructures exhibit a broad bandgap range and spherical morphology with high surface area and significant porosity, as confirmed by SEM, TEM, and BET surface area analysis. Consequently, the NiS/Ni-foam electrode exhibited remarkable electrochemical performance toward the oxidation of A, G, T, and C due to its large surface area, high electrode activity, and efficient electron transfer capacity. Under the optimum conditions, the electrode demonstrated selective and simultaneous detection of all four nucleobases over a wide linear range from 200 to 1000 μM for A and G, and 50 to 500 μM for T and C, with a low limit of detection of 159 μM for A, 147.6 μM for G, 16.8 μM for T, and 45.9 μM for C, along with high sensitivity of 1.2 × 10-4 A M-1 for A, 6.1 × 10-4 A M-1 for G, 1.2 × 10-3 A M-1 for T, and 3.0 × 10-4 A M-1 for C. The as-fabricated electrode revealed excellent reproducibility and stability toward nucleobase detection and demonstrated a reliable DPV response under different bending and twisting conditions. For immediate practical application, NiS/Ni-foam was utilized to quantify the concentration of all nucleobases in calf thymus and Escherichia coli (E. coli) DNA, resulting in a (G + C)/(A + T) ratio of 0.79 and 1.10, respectively. This simple, cost-effective, and flexible NiS/Ni-foam electrode paves the way for the development of non-invasive, wearable biosensors for potential applications in early disease detection.
Collapse
Affiliation(s)
- Prajakta
N. Gaikwad
- Department
of Chemistry, Ecole Centrale School of Engineering, Mahindra University, Hyderabad 500043, India
| | - Trishala R. Desai
- Department
of Chemistry, Ecole Centrale School of Engineering, Mahindra University, Hyderabad 500043, India
| | - Souradyuti Ghosh
- Centre
for Life Sciences, Mahindra University, Hyderabad 500043, India
- Interdisciplinary
Center for Nanosensors and Nanomedicines, Mahindra University, Hyderabad 500043, India
| | - Chitra Gurnani
- Department
of Chemistry, Ecole Centrale School of Engineering, Mahindra University, Hyderabad 500043, India
- Interdisciplinary
Center for Nanosensors and Nanomedicines, Mahindra University, Hyderabad 500043, India
| |
Collapse
|
2
|
Ameen Sha M, Meenu PC, Haspel H, Kónya Z. Metal-based non-enzymatic systems for cholesterol detection: mechanisms, features, and performance. RSC Adv 2024; 14:24561-24573. [PMID: 39108964 PMCID: PMC11299639 DOI: 10.1039/d4ra04104f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/17/2024] [Indexed: 01/18/2025] Open
Abstract
Metal based catalysts and electrodes are versatile tools known for their redox properties, catalytic efficiency, and stability under various conditions. Despite the absence of significant scientific hurdles, the utilization of these methods in cholesterol detection, particularly in non-enzymatic approaches, has been relatively underexplored. To this end, there is a pressing need to delve deeper into existing metal-based systems used in non-enzymatic cholesterol sensing, with the goal of fostering the development of innovative practical solutions. Various electrode systems, such as those employing Ni, Ti, Cu, Zn, W, Mn, and Fe, have already been reported for non-enzymatic cholesterol detection, some of them elucidated sensing mechanisms and potential in physiological detection. A detailed mechanistic understanding of oxide-based cholesterol sensors, along with the methodologies for constructing such systems, holds promise of advancing the exploration of practical applications. This review aims to provide a broad perspective on metal oxide systems and their characteristics that are conducive to non-enzymatic cholesterol sensing. It is intended to serve as a springboard with offering a guide to the design and development of efficient and sensitive electrochemical cholesterol sensors.
Collapse
Affiliation(s)
- M Ameen Sha
- Department of Applied and Environmental Chemistry, Faculty of Science and Informatics, University of Szeged Rerrich Béla tér 1 Szeged H-6720 Hungary
| | - P C Meenu
- Department of Chemistry, Birla Institute of Technology and Science Hyderabad Campus 500078 India
| | - H Haspel
- Department of Applied and Environmental Chemistry, Faculty of Science and Informatics, University of Szeged Rerrich Béla tér 1 Szeged H-6720 Hungary
- HUN-REN-SZTE Reaction Kinetics and Surface Chemistry Research Group, University of Szeged Rerrich Béla tér 1 Szeged H-6720 Hungary
| | - Z Kónya
- Department of Applied and Environmental Chemistry, Faculty of Science and Informatics, University of Szeged Rerrich Béla tér 1 Szeged H-6720 Hungary
- HUN-REN-SZTE Reaction Kinetics and Surface Chemistry Research Group, University of Szeged Rerrich Béla tér 1 Szeged H-6720 Hungary
| |
Collapse
|
3
|
Yang Z, Xu T, Li H, She M, Chen J, Wang Z, Zhang S, Li J. Zero-Dimensional Carbon Nanomaterials for Fluorescent Sensing and Imaging. Chem Rev 2023; 123:11047-11136. [PMID: 37677071 DOI: 10.1021/acs.chemrev.3c00186] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Advances in nanotechnology and nanomaterials have attracted considerable interest and play key roles in scientific innovations in diverse fields. In particular, increased attention has been focused on carbon-based nanomaterials exhibiting diverse extended structures and unique properties. Among these materials, zero-dimensional structures, including fullerenes, carbon nano-onions, carbon nanodiamonds, and carbon dots, possess excellent bioaffinities and superior fluorescence properties that make these structures suitable for application to environmental and biological sensing, imaging, and therapeutics. This review provides a systematic overview of the classification and structural properties, design principles and preparation methods, and optical properties and sensing applications of zero-dimensional carbon nanomaterials. Recent interesting breakthroughs in the sensitive and selective sensing and imaging of heavy metal pollutants, hazardous substances, and bioactive molecules as well as applications in information encryption, super-resolution and photoacoustic imaging, and phototherapy and nanomedicine delivery are the main focus of this review. Finally, future challenges and prospects of these materials are highlighted and envisaged. This review presents a comprehensive basis and directions for designing, developing, and applying fascinating fluorescent sensors fabricated based on zero-dimensional carbon nanomaterials for specific requirements in numerous research fields.
Collapse
Affiliation(s)
- Zheng Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
| | - Tiantian Xu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
| | - Hui Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
| | - Mengyao She
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- Ministry of Education Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Provincial Key Laboratory of Biotechnology of Shaanxi, The College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Jiao Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- Ministry of Education Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Provincial Key Laboratory of Biotechnology of Shaanxi, The College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Zhaohui Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Shengyong Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Jianli Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
4
|
Sri Varalakshmi G, Pawar C, Selvam R, Gem Pearl W, Manikantan V, Sumohan Pillai A, Alexander A, Rajendra Prasad N, Enoch IVMV, Dhanaraj P. Nickel sulfide and dysprosium-doped nickel sulfide nanoparticles: Dysprosium-induced variation in properties, in vitro chemo-photothermal behavior, and antibacterial activity. Int J Pharm 2023; 643:123282. [PMID: 37524253 DOI: 10.1016/j.ijpharm.2023.123282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Newer materials for utilization in multi-directional therapeutic actions are investigated, considering delicate design principles involving size and shape control, surface modification, and controllable drug loading and release. Multi-faceted properties are imparted to the engineered nanoparticles, like magnetism, near-infrared absorption, photothermal efficiency, and suitable size and shape. This report presents nickel sulfide and dysprosium-doped nickel sulfide nanoparticles with poly-β-cyclodextrin polymer coating. The nanoparticles belong to the orthorhombic crystal systems, as indicated by X-ray diffraction studies. The size and shape of the nanoparticles are investigated using Transmission Electron Microscope (TEM) and a particle-size analyzer. The particles show soft ferromagnetic characteristics with definite and moderate saturation magnetization values. The nickel sulfide nanoparticles' in vitro anticancer and antibacterial activities are investigated in free and 5-fluorouracil/penicillin benzathine-loaded forms. The 5-fluorouracil-encapsulation efficiency of the nanoparticles is around 87%, whereas it is above 92% in the case of penicillin benzathine. Both drugs are released slowly in a controlled fashion. The dysprosium-doped nickel sulfide nanoparticles show better anticancer activity, and the efficacy is more significant than the free drug. The nanoparticles are irradiated with a low-power 808 nm laser. The dysprosium-doped nickel sulfide nanoparticles attain a higher temperature on irradiation, i.e., above 59 °C. The photothermal conversion efficiency of this material is determined, and the significance of dysprosium doping is discussed. Contrarily, the undoped nickel sulfide nanoparticles show more significant antibacterial activity. This study presents a novel designed nanoparticle system and the exciting variation of properties on dysprosium doping in nickel sulfide nanoparticles.
Collapse
Affiliation(s)
- Govindaraj Sri Varalakshmi
- Department of Applied Chemistry, Karunya Institute of Technology and Sciences (Deemed University), Coimbatore 641114, Tamil Nadu, India
| | - Charansingh Pawar
- Department of Biochemistry and Biotechnology, Annamalai University, Chidambaram 608002, Tamil Nadu, India
| | - Rajakar Selvam
- Centre for Nanoscience and Genomics, Karunya Institute of Technology and Sciences (Deemed University), Coimbatore 641114, Tamil Nadu, India
| | - Wrenit Gem Pearl
- Centre for Nanoscience and Genomics, Karunya Institute of Technology and Sciences (Deemed University), Coimbatore 641114, Tamil Nadu, India
| | - Varnitha Manikantan
- Centre for Nanoscience and Genomics, Karunya Institute of Technology and Sciences (Deemed University), Coimbatore 641114, Tamil Nadu, India
| | - Archana Sumohan Pillai
- Centre for Nanoscience and Genomics, Karunya Institute of Technology and Sciences (Deemed University), Coimbatore 641114, Tamil Nadu, India
| | - Aleyamma Alexander
- Centre for Nanoscience and Genomics, Karunya Institute of Technology and Sciences (Deemed University), Coimbatore 641114, Tamil Nadu, India
| | - N Rajendra Prasad
- Department of Biochemistry and Biotechnology, Annamalai University, Chidambaram 608002, Tamil Nadu, India
| | - Israel V M V Enoch
- Centre for Nanoscience and Genomics, Karunya Institute of Technology and Sciences (Deemed University), Coimbatore 641114, Tamil Nadu, India.
| | - Premnath Dhanaraj
- Department of Biotechnology, Karunya Institute of Technology and Sciences (Deemed University), Coimbatore 641114, Tamil Nadu, India.
| |
Collapse
|
5
|
Salvatore KL, Fang J, Tang CR, Takeuchi ES, Marschilok AC, Takeuchi KJ, Wong SS. Microwave-Assisted Fabrication of High Energy Density Binary Metal Sulfides for Enhanced Performance in Battery Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101599. [PMID: 37242017 DOI: 10.3390/nano13101599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/07/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023]
Abstract
Nanomaterials have found use in a number of relevant energy applications. In particular, nanoscale motifs of binary metal sulfides can function as conversion materials, similar to that of analogous metal oxides, nitrides, or phosphides, and are characterized by their high theoretical capacity and correspondingly low cost. This review focuses on structure-composition-property relationships of specific relevance to battery applications, emanating from systematic attempts to either (1) vary and alter the dimension of nanoscale architectures or (2) introduce conductive carbon-based entities, such as carbon nanotubes and graphene-derived species. In this study, we will primarily concern ourselves with probing metal sulfide nanostructures generated by a microwave-mediated synthetic approach, which we have explored extensively in recent years. This particular fabrication protocol represents a relatively facile, flexible, and effective means with which to simultaneously control both chemical composition and physical morphology within these systems to tailor them for energy storage applications.
Collapse
Affiliation(s)
- Kenna L Salvatore
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
| | - Justin Fang
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
| | - Christopher R Tang
- Department of Materials Science and Chemical Engineering, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
- Institute for Energy Sustainability and Equity, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
| | - Esther S Takeuchi
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
- Department of Materials Science and Chemical Engineering, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
- Institute for Energy Sustainability and Equity, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | - Amy C Marschilok
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
- Department of Materials Science and Chemical Engineering, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
- Institute for Energy Sustainability and Equity, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | - Kenneth J Takeuchi
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
- Department of Materials Science and Chemical Engineering, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
- Institute for Energy Sustainability and Equity, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | - Stanislaus S Wong
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
| |
Collapse
|
6
|
Ghasempour A, Dehghan H, Ataee M, Chen B, Zhao Z, Sedighi M, Guo X, Shahbazi MA. Cadmium Sulfide Nanoparticles: Preparation, Characterization, and Biomedical Applications. Molecules 2023; 28:3857. [PMID: 37175267 PMCID: PMC10179838 DOI: 10.3390/molecules28093857] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Cadmium sulfide nanoparticles (CdS NPs) have been employed in various fields of nanobiotechnology due to their proven biomedical properties. They are unique in their properties due to their size and shape, and they are popular in the area of biosensors, bioimaging, and antibacterial and anticancer applications. Most CdS NPs are generally synthesized through chemical, physical, or biological methods. Among these methods, biogenic synthesis has attracted more attention due to its high efficiency, environmental friendliness, and biocompatibility features. The green approach was found to be superior to other methods in terms of maintaining the structural characteristics needed for optimal biomedical applications. The size and coating components of CdS NPs play a crucial role in their biomedical activities, such as anticancer, antibacterial, bioimaging, and biosensing applications. CdS NPs have gained significant interest in bioimaging due to their desirable properties, including good dispersion, cell integrity preservation, and efficient light scattering. Despite these, further studies are necessary, particularly in vivo studies to reduce NPs' toxicity. This review discusses the different methods of synthesis, how CdS NPs are characterized, and their applications in the biomedical field.
Collapse
Affiliation(s)
- Alireza Ghasempour
- Student Research Committee, Birjand University of Medical Sciences, Birjand 9717853076, Iran
| | - Hamideh Dehghan
- Student Research Committee, Birjand University of Medical Sciences, Birjand 9717853076, Iran
| | - Mehrnaz Ataee
- Student Research Committee, Birjand University of Medical Sciences, Birjand 9717853076, Iran
| | - Bozhi Chen
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zeqiang Zhao
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mahsa Sedighi
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Birjand University of Medical Sciences, Birjand 9717853076, Iran
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand 9717853076, Iran
| | - Xindong Guo
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
7
|
Guan X, Li Z, Geng X, Lei Z, Karakoti A, Wu T, Kumar P, Yi J, Vinu A. Emerging Trends of Carbon-Based Quantum Dots: Nanoarchitectonics and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207181. [PMID: 36693792 DOI: 10.1002/smll.202207181] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Carbon-based quantum dots (QDs) have emerged as a fascinating class of advanced materials with a unique combination of optoelectronic, biocompatible, and catalytic characteristics, apt for a plethora of applications ranging from electronic to photoelectrochemical devices. Recent research works have established carbon-based QDs for those frontline applications through improvements in materials design, processing, and device stability. This review broadly presents the recent progress in the synthesis of carbon-based QDs, including carbon QDs, graphene QDs, graphitic carbon nitride QDs and their heterostructures, as well as their salient applications. The synthesis methods of carbon-based QDs are first introduced, followed by an extensive discussion of the dependence of the device performance on the intrinsic properties and nanostructures of carbon-based QDs, aiming to present the general strategies for device designing with optimal performance. Furthermore, diverse applications of carbon-based QDs are presented, with an emphasis on the relationship between band alignment, charge transfer, and performance improvement. Among the applications discussed in this review, much focus is given to photo and electrocatalytic, energy storage and conversion, and bioapplications, which pose a grand challenge for rational materials and device designs. Finally, a summary is presented, and existing challenges and future directions are elaborated.
Collapse
Affiliation(s)
- Xinwei Guan
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Zhixuan Li
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Xun Geng
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Zhihao Lei
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Ajay Karakoti
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Tom Wu
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, 999077, P. R. China
| | - Prashant Kumar
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Jiabao Yi
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
8
|
Wang X, Lu D, Liu Y, Wang W, Ren R, Li M, Liu D, Liu Y, Liu Y, Pang G. Electrochemical Signal Amplification Strategies and Their Use in Olfactory and Taste Evaluation. BIOSENSORS 2022; 12:bios12080566. [PMID: 35892464 PMCID: PMC9394270 DOI: 10.3390/bios12080566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/20/2022] [Accepted: 07/24/2022] [Indexed: 05/07/2023]
Abstract
Biosensors are powerful analytical tools used to identify and detect target molecules. Electrochemical biosensors, which combine biosensing with electrochemical analysis techniques, are efficient analytical instruments that translate concentration signals into electrical signals, enabling the quantitative and qualitative analysis of target molecules. Electrochemical biosensors have been widely used in various fields of detection and analysis due to their high sensitivity, superior selectivity, quick reaction time, and inexpensive cost. However, the signal changes caused by interactions between a biological probe and a target molecule are very weak and difficult to capture directly by using detection instruments. Therefore, various signal amplification strategies have been proposed and developed to increase the accuracy and sensitivity of detection systems. This review serves as a reference for biosensor and detector research, as it introduces the research progress of electrochemical signal amplification strategies in olfactory and taste evaluation. It also discusses the latest signal amplification strategies currently being employed in electrochemical biosensors for nanomaterial development, enzyme labeling, and nucleic acid amplification techniques, and highlights the most recent work in using cell tissues as biosensitive elements.
Collapse
Affiliation(s)
- Xinqian Wang
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China; (X.W.); (M.L.); (D.L.); (Y.L.); (Y.L.)
| | - Dingqiang Lu
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China; (X.W.); (M.L.); (D.L.); (Y.L.); (Y.L.)
- Correspondence: (D.L.); (G.P.)
| | - Yuan Liu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (W.W.)
| | - Wenli Wang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (W.W.)
| | - Ruijuan Ren
- Tianjin Institute for Food Safety Inspection Technology, Tianjin 300308, China;
| | - Ming Li
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China; (X.W.); (M.L.); (D.L.); (Y.L.); (Y.L.)
| | - Danyang Liu
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China; (X.W.); (M.L.); (D.L.); (Y.L.); (Y.L.)
| | - Yujiao Liu
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China; (X.W.); (M.L.); (D.L.); (Y.L.); (Y.L.)
| | - Yixuan Liu
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China; (X.W.); (M.L.); (D.L.); (Y.L.); (Y.L.)
| | - Guangchang Pang
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology & Food Science, Tianjin University of Commerce, Tianjin 300134, China; (X.W.); (M.L.); (D.L.); (Y.L.); (Y.L.)
- Correspondence: (D.L.); (G.P.)
| |
Collapse
|
9
|
Amperometric biosensors for L-arginine and creatinine assay based on recombinant deiminases and ammonium-sensitive Cu/Zn(Hg)S nanoparticles. Talanta 2022; 238:122996. [PMID: 34857329 DOI: 10.1016/j.talanta.2021.122996] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/11/2021] [Accepted: 10/21/2021] [Indexed: 12/13/2022]
Abstract
There are limited data on amperometric biosensors (ABSs) based on deiminases that produce ammonium as a byproduct of enzymatic reaction. The most frequently proposed biosensors utilizing such a mode are based on potentiometric transducers, which contain at least two enzymes in the bioselective layer; this complicates the procedure and increases the cost of analysis. Thus, the construction of a one-enzyme ABS is a practical problem. In our manuscript ABSs for the direct measurement of creatinine (Crn) and l-arginine (Arg), based on the recombinant bacterial creatinine deiminase (CDI) and arginine deiminase (ADI), are described. To choose the best chemosensor on ammonium ions, a number of nanoparticles (NPs) were synthesized and characterized using cyclic voltammetry. Hybrid Cu/Zn(Hg)S-NPs, having a good selectivity and an extremely high sensitivities towards ammonium ions (5660 A M-1 m-2 at +170 mV and 1870 A M-1 m-2 at -300 mV, respectively), was selected for the development of deiminase-based ABSs. The novel biosensors exhibited very high sensitivities (2660 A M-1 m-2 to Crn for CDI-ABS; 1570 A M-1 m-2 to Arg for ADI-ABS), broad linear ranges, low limits of detection, satisfactory storage stabilities and good selectivities towards natural substrates. The constructed CDI-ABS and ADI-ABS were tested on real samples of biological fluids and juices for Crn and Arg assay, respectively. High correlations of the obtained results with the reference methods were demonstrated for the target analytes.
Collapse
|
10
|
Chen Y, Wang F, Liu BX, Rao WD, Wang SY. A Ni( ii)-catalyzed reductive cross-coupling reaction of oxalates and thiosulfonates/selenosulfonates. Org Chem Front 2022. [DOI: 10.1039/d1qo01614h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Ni(ii)-catalyzed reductive cross-coupling reaction of oxalates and thiosulfonates/selenosulfonates to synthesize benzylic sulfides/selenides under mild conditions is developed.
Collapse
Affiliation(s)
- Ying Chen
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Fei Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Bo-Xi Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Wei-Dong Rao
- Key Laboratory of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| |
Collapse
|
11
|
Metal Sulfide Semiconductor Nanomaterials and Polymer Microgels for Biomedical Applications. Int J Mol Sci 2021; 22:ijms222212294. [PMID: 34830175 PMCID: PMC8623293 DOI: 10.3390/ijms222212294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 11/25/2022] Open
Abstract
The development of nanomaterials with therapeutic and/or diagnostic properties has been an active area of research in biomedical sciences over the past decade. Nanomaterials have been identified as significant medical tools with potential therapeutic and diagnostic capabilities that are practically impossible to accomplish using larger molecules or bulk materials. Fabrication of nanomaterials is the most effective platform to engineer therapeutic agents and delivery systems for the treatment of cancer. This is mostly due to the high selectivity of nanomaterials for cancerous cells, which is attributable to the porous morphology of tumour cells which allows nanomaterials to accumulate more in tumour cells more than in normal cells. Nanomaterials can be used as potential drug delivery systems since they exist in similar scale as proteins. The unique properties of nanomaterials have drawn a lot of interest from researchers in search of new chemotherapeutic treatment for cancer. Metal sulfide nanomaterials have emerged as the most used frameworks in the past decade, but they tend to aggregate because of their high surface energy which triggers the thermodynamically favoured interaction. Stabilizing agents such as polymer and microgels have been utilized to inhibit the particles from any aggregations. In this review, we explore the development of metal sulfide polymer/microgel nanocomposites as therapeutic agents against cancerous cells.
Collapse
|
12
|
Priscillal IJD, Alothman AA, Wang SF, Arumugam R. Lanthanide type of cerium sulfide embedded carbon nitride composite modified electrode for potential electrochemical detection of sulfaguanidine. Mikrochim Acta 2021; 188:313. [PMID: 34458931 DOI: 10.1007/s00604-021-04975-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/05/2021] [Indexed: 11/24/2022]
Abstract
Environmental sustainability is threatened by the widespread exploitation and unfettered release of chemical pollutants that require immediate detection and eradication. An instantaneous quantification technique is essential to understand the physiological roles of the antibacterial drug sulfaguanidine (SGN) in biological systems. The present work features the green and environmentally benign synthesis of rare earth metal sulfide nanorods incorporated carbon nitrides sheets (Ce2S3@CNS) by deep eutectic solvent-based fabrication with remarkable electrochemical properties. The morphological and structural analyses of the prepared electrocatalyst were characterized using various techniques including SEM, XRD, XPS, and EIS. The heterojunction of regimented structures bids synergistic quantum confinement effects and refines charge carriers endorsing enormous active sites. Furthermore, the obtained Ce2S3@CNS/GCE possess an exceedingly lower limit of detection (0.0053 μM) and high sensitivity of 8.685 μA·μM-1·cm-2 with superior electrocatalytic action and virtuous stability for the detection of SGN. This modified electrode could afford linearity in the range 0.01-1131.5 μM measured at 0.95 V (vs. Ag/AgCl) correlated to the concentration of SGN. Examining the real samples with this advanced electrocatalyst would support its hands-on applications in everyday life. Development of such innovative architectures with fewer energy necessities and nominal by-products scripts the superiority in characteristic synthetic methodology following the guidelines of green chemistry.
Collapse
Affiliation(s)
- I Jenisha Daisy Priscillal
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Rd., Taipei, 106, Taiwan
| | - Asma A Alothman
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Rd., Taipei, 106, Taiwan.
| | - Rameshkumar Arumugam
- Department of Chemistry, Bannari Amman Institute of Technology, Sathyamangalam, Erode, India. .,Korea University of Technology and Education, Cheonan-si, 31253, Chungcheongnam-do, Republic of Korea.
| |
Collapse
|
13
|
Biosensors-Recent Advances and Future Challenges. SENSORS 2020; 20:s20226645. [PMID: 33233539 PMCID: PMC7699460 DOI: 10.3390/s20226645] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 12/18/2022]
|