1
|
Lee GH, Ahn S, Kim MS, Lee SW, Kim JS, Choi BK, Pagidi S, Jeon MY. Output Characterization of 220 nm Broadband 1250 nm Wavelength-Swept Laser for Dynamic Optical Fiber Sensors. SENSORS (BASEL, SWITZERLAND) 2022; 22:8867. [PMID: 36433461 PMCID: PMC9696297 DOI: 10.3390/s22228867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Broadband wavelength-swept lasers (WSLs) are widely used as light sources in biophotonics and optical fiber sensors. Herein, we present a polygonal mirror scanning wavelength filter (PMSWF)-based broadband WSL using two semiconductor optical amplifiers (SOAs) with different center wavelengths as the gain medium. The 10-dB bandwidth of the wavelength scanning range with 3.6 kHz scanning frequency was approximately 223 nm, from 1129 nm to 1352 nm. When the scanning frequency of the WSL was increased, the intensity and bandwidth decreased. The main reason for this is that the laser oscillation time becomes insufficient as the scanning frequency increases. We analyzed the intensity and bandwidth decrease according to the increase in the scanning frequency in the WSL through the concept of saturation limit frequency. In addition, optical alignment is important for realizing broadband WSLs. The optimal condition can be determined by analyzing the beam alignment according to the position of the diffraction grating and the lenses in the PMSWF. This broadband WSL is specially expected to be used as a light source in broadband distributed dynamic FBG fiber-optic sensors.
Collapse
Affiliation(s)
- Gi Hyen Lee
- Department of Physics, College of Natural Sciences, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Soyeon Ahn
- Department of Physics, College of Natural Sciences, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Min Su Kim
- Department of Physics, College of Natural Sciences, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Sang Won Lee
- Department of Physics, College of Natural Sciences, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Ji Su Kim
- Department of Physics, College of Natural Sciences, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Byeong Kwon Choi
- Department of Physics, College of Natural Sciences, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Srinivas Pagidi
- Institute of Quantum Systems (IQS), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Min Yong Jeon
- Department of Physics, College of Natural Sciences, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
- Institute of Quantum Systems (IQS), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| |
Collapse
|
2
|
Fiber-Optic Temperature Sensor Using Cholesteric Liquid Crystals on the Optical Fiber Ferrules. SENSORS 2022; 22:s22155752. [PMID: 35957311 PMCID: PMC9370840 DOI: 10.3390/s22155752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/30/2022] [Accepted: 07/30/2022] [Indexed: 02/04/2023]
Abstract
Cholesteric liquid crystals (CLCs) can be applied to various physical and chemical sensors because their alignment structures are changed by external stimuli. Here, we propose a CLC device fabricated by vertically forming the helical axis of the CLC between the cross-sections of two optical fiber ferrules. An optical fiber temperature sensor was successfully implemented using the proposed optical fiber ferrule-based CLC device. A wideband wavelength-swept laser with a center wavelength of 1073 nm and scanning range of 220 nm was used as a light source to measure the variations in the reflection spectrum band according to the temperature change in the CLC cell. The wavelength variation of the reflection spectrum band according to the temperature applied to the CLC cell was reversible and changed linearly with a change in the temperature, and the long-wavelength edge variation rate according to the temperature change was −5.0 nm/°C. Additionally, as the temperature applied to the CLC cell increased, the reflection spectrum bandwidth gradually decreased; the reflection spectrum bandwidth varied at a rate of −1.89 nm/°C. The variations in the refractive indices with temperature were calculated from the band wavelengths of the reflection spectrum. The pitch at each temperature was calculated based on the refractive indices and it gradually decreased as the temperature increased.
Collapse
|
3
|
1.1-µm Band Extended Wide-Bandwidth Wavelength-Swept Laser Based on Polygonal Scanning Wavelength Filter. SENSORS 2021; 21:s21093053. [PMID: 33925592 PMCID: PMC8141112 DOI: 10.3390/s21093053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 12/03/2022]
Abstract
We demonstrated a 1.1-µm band extended wideband wavelength-swept laser (WSL) that combined two semiconductor optical amplifiers (SOAs) based on a polygonal scanning wavelength filter. The center wavelengths of the two SOAs were 1020 nm and 1140 nm, respectively. Two SOAs were connected in parallel in the form of a Mach-Zehnder interferometer. At a scanning speed of 1.8 kHz, the 10-dB bandwidth of the spectral output and the average power were approximately 228 nm and 16.88 mW, respectively. Owing to the nonlinear effect of the SOA, a decrease was observed in the bandwidth according to the scanning speed. Moreover, the intensity of the WSL decreased because the oscillation time was smaller than the buildup time. In addition, a cholesteric liquid crystal (CLC) cell was fabricated as an application of WSL, and the dynamic change of the first-order reflection of the CLC cell in the 1-µm band was observed using the WSL. The pitch jumps of the reflection band occurred according to the electric field applied to the CLC cell, and instantaneous changes were observed.
Collapse
|