1
|
Xu H, Hassan SA, Haider W, Sun Y, Yu X. A Frequency-Shifting Variational Mode Decomposition-Based Approach to MI-EEG Signal Classification for BCIs. SENSORS (BASEL, SWITZERLAND) 2025; 25:2134. [PMID: 40218647 PMCID: PMC11991394 DOI: 10.3390/s25072134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/16/2025] [Accepted: 03/25/2025] [Indexed: 04/14/2025]
Abstract
Electroencephalogram (EEG) signal analysis is crucial for understanding neural activity and advancing diagnostics in neurology. However, traditional signal decomposition (SD) techniques are hindered by two critical issues, mode mixing and mode aliasing, that compromise the quality of the decomposed signal. These challenges result in poor signal integrity, which significantly affects the accuracy of subsequent EEG interpretations and classifications. As EEG analysis is widely used in diagnosing conditions such as epilepsy, brain injuries, and sleep disorders, the impact of these shortcomings can be far-reaching, leading to misdiagnoses or delayed treatments. Despite extensive research on SD techniques, these issues remain largely unresolved, emphasizing the urgent need for a more reliable and precise approach. This study proposes a novel solution through the frequency-shifting variational mode decomposition (FS-VMD) method, which overcomes the limitations of traditional SD techniques by providing better resolution of intrinsic mode functions (IMFs). The FS-VMD method works by extracting and shifting the fundamental frequency of the EEG signal to a lower frequency range, followed by an iterative decomposition process that enhances signal clarity and reduces mode aliasing. By integrating advanced feature selection techniques and classifiers such as support vector machines (SVM), convolutional neural networks (CNN), and feature-weighted k-nearest neighbors (FWKNN), this approach offers a significant improvement in classification accuracy, with SVM achieving up to 99.99% accuracy in the 18-channel EEG setup with a standard deviation of 0.25. The results demonstrate that FS-VMD can address the critical issues of mode mixing and aliasing, providing a more accurate and efficient solution for EEG signal analysis and diagnostics.
Collapse
Affiliation(s)
- Haiqin Xu
- College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China; (H.X.); (Y.S.)
| | - Shahzada Ali Hassan
- School of Automation, Northwestern Polytechnical University, Xi’an 710072, China; (S.A.H.); (W.H.)
| | - Waseem Haider
- School of Automation, Northwestern Polytechnical University, Xi’an 710072, China; (S.A.H.); (W.H.)
| | - Youchao Sun
- College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China; (H.X.); (Y.S.)
| | - Xiaojun Yu
- School of Automation, Northwestern Polytechnical University, Xi’an 710072, China; (S.A.H.); (W.H.)
| |
Collapse
|
2
|
Ramkumar E, Paulraj M. Optimized FFNN with multichannel CSP-ICA framework of EEG signal for BCI. Comput Methods Biomech Biomed Engin 2025; 28:61-78. [PMID: 38404196 DOI: 10.1080/10255842.2024.2319701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/07/2023] [Accepted: 02/12/2024] [Indexed: 02/27/2024]
Abstract
The electroencephalogram (EEG) of the patient is used to identify their motor intention, which is then converted into a control signal through a brain-computer interface (BCI) based on motor imagery. Whenever gathering features from EEG signals, making a BCI is difficult in part because of the enormous dimensionality of the data. Three stages make up the suggested methodology: pre-processing, extraction of features, selection, and categorization. To remove unwanted artifacts, the EEG signals are filtered by a fifth-order Butterworth multichannel band-pass filter. This decreases execution time and memory use, both of which improve system performance. Then a novel multichannel optimized CSP-ICA feature extraction technique is used to separate and eliminate non-discriminative information from discriminative information in the EEG channels. Furthermore, CSP uses the concept of an Artificial Bee Colony (ABC) algorithm to automatically identify the simultaneous global ideal frequency band and time interval combination for the extraction and classification of common spatial pattern characteristics. Finally, a Tunable optimized feed-forward neural network (FFNN) classifier is utilized to extract and categorize the temporal and frequency domain features, which employs an FFNN classifier with Tunable-Q wavelet transform. The proposed framework, therefore optimizes signal processing, enabling enhanced EEG signal classification for BCI applications. The result shows that the models that use Tunable optimized FFNN produce higher classification accuracy of more than 20% when compared to the existing models.
Collapse
Affiliation(s)
- E Ramkumar
- Sri Ramakrishna Institute of Technology, Coimbatore, India
| | - M Paulraj
- Sri Ramakrishna Institute of Technology, Coimbatore, India
| |
Collapse
|
3
|
Jamil M, Aziz MZ, Yu X. Exploring the potential of pretrained CNNs and time-frequency methods for accurate epileptic EEG classification: a comparative study. Biomed Phys Eng Express 2024; 10:045023. [PMID: 38599183 DOI: 10.1088/2057-1976/ad3cde] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/10/2024] [Indexed: 04/12/2024]
Abstract
Prompt diagnosis of epilepsy relies on accurate classification of automated electroencephalogram (EEG) signals. Several approaches have been developed to characterize epileptic EEG data; however, none of them have exploited time-frequency data to evaluate the effect of tweaking parameters in pretrained frameworks for EEG data classification. This study compares the performance of several pretrained convolutional neural networks (CNNs) namely, AlexNet, GoogLeNet, MobileNetV2, ResNet-18 and SqueezeNet for the localization of epilepsy EEG data using various time-frequency data representation algorithms. Continuous wavelet transform (CWT), empirical Fourier decomposition (EFD), empirical mode decomposition (EMD), empirical wavelet transform (EWT), and variational mode decomposition (VMD) were exploited for the acquisition of 2D scalograms from 1D data. The research evaluates the effect of multiple factors, including noisy versus denoised scalograms, different optimizers, learning rates, single versus dual channels, model size, and computational time consumption. The benchmark Bern-Barcelona EEG dataset is used for testing purpose. Results obtained show that the combination of MobileNetV2, Continuous Wavelet Transform (CWT) and Adam optimizer at a learning rate of 10-4, coupled with dual-data channels, provides the best performance metrics. Specifically, these parameters result in optimal sensitivity, specificity, f1-score, and classification accuracy, with respective values of 96.06%, 96.15%, 96.08%, and 96.10%. To further corroborate the efficacy of opted pretrained models on exploited Signal Decomposition (SD) algorithms, the classifiers are also being simulated on Temple University database at pinnacle modeling composition. A similar pattern in the outcome readily validate the findings of our study and robustness of deep learning models on epilepsy EEG scalograms.The conclusions drawn emphasize the potential of pretrained CNN-based models to create a robust, automated system for diagnosing epileptiform. Furthermore, the study offers insights into the effectiveness of varying time-frequency techniques and classifier parameters for classifying epileptic EEG data.
Collapse
Affiliation(s)
- Mudasir Jamil
- School of Automation, Northwestern Polytechnical University, Xi'an, 710000, People's Republic of China
| | - Muhammad Zulkifal Aziz
- School of Automation, Northwestern Polytechnical University, Xi'an, 710000, People's Republic of China
| | - Xiaojun Yu
- School of Automation, Northwestern Polytechnical University, Xi'an, 710000, People's Republic of China
| |
Collapse
|
4
|
Venu K, Natesan P. Hybrid optimization assisted channel selection of EEG for deep learning model-based classification of motor imagery task. BIOMED ENG-BIOMED TE 2024; 69:125-140. [PMID: 37935217 DOI: 10.1515/bmt-2023-0407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 09/30/2023] [Indexed: 11/09/2023]
Abstract
OBJECTIVES To design and develop an approach named HC + SMA-SSA scheme for classifying motor imagery task. METHODS The offered model employs a new method for classifying motor imagery task. Initially, down sampling is deployed to pre-process the incoming signal. Subsequently, "Modified Stockwell Transform (ST) and common spatial pattern (CSP) based features are extracted". Then, optimal channel selection is made by a novel hybrid optimization model named as Spider Monkey Assisted SSA (SMA-SSA). Here, "Long Short Term Memory (LSTM) and Bidirectional Gated Recurrent Unit (BI-GRU)" models are used for final classification, whose outcomes are averaged at the end. At last, the improvement of SMA-SSA based model is proven over different metrics. RESULTS A superior sensitivity of 0.939 is noted for HC + SMA-SSA that was higher over HC with no optimization and proposed with traditional ST. CONCLUSIONS The proposed method achieved effective classification performance in terms of performance measures.
Collapse
Affiliation(s)
- K Venu
- Department of Computer Science and Engineering, Kongu Engineering College, Perundurai, Tamilnadu, India
| | - P Natesan
- Department of Computer Science and Engineering, Kongu Engineering College, Perundurai, Tamilnadu, India
| |
Collapse
|
5
|
Sadiq MT, Siuly S, Almogren A, Li Y, Wen P. Efficient novel network and index for alcoholism detection from EEGs. Health Inf Sci Syst 2023; 11:27. [PMID: 37337563 PMCID: PMC10276798 DOI: 10.1007/s13755-023-00227-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/17/2023] [Indexed: 06/21/2023] Open
Abstract
Background Alcoholism is a catastrophic condition that causes brain damage as well as neurological, social, and behavioral difficulties. Limitations This illness is often assessed using the Cut down, Annoyed, Guilty, and Eye-opener examination technique, which assesses the intensity of an alcohol problem. This technique is protracted, arduous, error-prone, and errant. Method As a result, the intention of this paper is to design a cutting-edge system for automatically identifying alcoholism utilizing electroencephalography (EEG) signals, that can alleviate these problems and aid practitioners and investigators. First, we investigate the feasibility of using the Fast Walsh-Hadamard transform of EEG signals to explore the unpredictable essence and variability of EEG indicators in the suggested framework. Second, thirty-six linear and nonlinear features for deciphering the dynamic pattern of healthy and alcoholic EEG signals are discovered. Subsequently, we suggested a strategy for selecting powerful features. Finally, nineteen machine learning algorithms and five neural network classifiers are used to assess the overall performance of selected attributes. Results The extensive experiments show that the suggested method provides the best classification efficiency, with 97.5% accuracy, 96.7% sensitivity, and 98.3% specificity for the features chosen using the correlation-based FS approach with Recurrent Neural Networks. With recently introduced matrix determinant features, a classification accuracy of 93.3% is also attained. Moreover, we developed a novel index that uses clinically meaningful features to differentiate between healthy and alcoholic categories with a unique integer. This index can assist health care workers, commercial companies, and design engineers in developing a real-time system with 100% classification results for the computerized framework.
Collapse
Affiliation(s)
- Muhammad Tariq Sadiq
- Advanced Engineering Centre, School of Architecture, Technology and Engineering, University of Brighton, Brighton, BN2 4AT UK
| | - Siuly Siuly
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, 3011 Australia
| | - Ahmad Almogren
- Department of Computer Science, College of Computer and Information Sciences, King Saud University, 11633 Riyadh, Saudi Arabia
| | - Yan Li
- School of Mathematics Physics and Computing, University of Southern Queensland, Toowoomba Campus, Toowoomba, 4350 Australia
| | - Paul Wen
- School of Engineering, University of Southern Queensland, Toowoomba Campus, Toowoomba, 4350 Australia
| |
Collapse
|
6
|
Zheng Y, Liu C, Lai NYG, Wang Q, Xia Q, Sun X, Zhang S. Current development of biosensing technologies towards diagnosis of mental diseases. Front Bioeng Biotechnol 2023; 11:1190211. [PMID: 37456720 PMCID: PMC10342212 DOI: 10.3389/fbioe.2023.1190211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
The biosensor is an instrument that converts the concentration of biomarkers into electrical signals for detection. Biosensing technology is non-invasive, lightweight, automated, and biocompatible in nature. These features have significantly advanced medical diagnosis, particularly in the diagnosis of mental disorder in recent years. The traditional method of diagnosing mental disorders is time-intensive, expensive, and subject to individual interpretation. It involves a combination of the clinical experience by the psychiatrist and the physical symptoms and self-reported scales provided by the patient. Biosensors on the other hand can objectively and continually detect disease states by monitoring abnormal data in biomarkers. Hence, this paper reviews the application of biosensors in the detection of mental diseases, and the diagnostic methods are divided into five sub-themes of biosensors based on vision, EEG signal, EOG signal, and multi-signal. A prospective application in clinical diagnosis is also discussed.
Collapse
Affiliation(s)
- Yuhan Zheng
- Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo, China
- Ningbo Research Center, Ningbo Innovation Center, Zhejiang University, Ningbo, China
- Robotics Institute, Ningbo University of Technology, Ningbo, China
| | - Chen Liu
- Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo, China
- Ningbo Research Center, Ningbo Innovation Center, Zhejiang University, Ningbo, China
| | - Nai Yeen Gavin Lai
- Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo, China
| | - Qingfeng Wang
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, China
| | - Qinghua Xia
- Ningbo Research Center, Ningbo Innovation Center, Zhejiang University, Ningbo, China
| | - Xu Sun
- Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo, China
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, China
| | - Sheng Zhang
- Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo, China
- Ningbo Research Center, Ningbo Innovation Center, Zhejiang University, Ningbo, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Rosenfelder MJ, Spiliopoulou M, Hoppenstedt B, Pryss R, Fissler P, della Piedra Walter M, Kolassa IT, Bender A. Stability of mental motor-imagery classification in EEG depends on the choice of classifier model and experiment design, but not on signal preprocessing. Front Comput Neurosci 2023; 17:1142948. [PMID: 37180880 PMCID: PMC10169631 DOI: 10.3389/fncom.2023.1142948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/05/2023] [Indexed: 05/16/2023] Open
Abstract
Introduction Modern consciousness research has developed diagnostic tests to improve the diagnostic accuracy of different states of consciousness via electroencephalography (EEG)-based mental motor imagery (MI), which is still challenging and lacks a consensus on how to best analyse MI EEG-data. An optimally designed and analyzed paradigm must detect command-following in all healthy individuals, before it can be applied in patients, e.g., for the diagnosis of disorders of consciousness (DOC). Methods We investigated the effects of two important steps in the raw signal preprocessing on predicting participant performance (F1) and machine-learning classifier performance (area-under-curve, AUC) in eight healthy individuals, that are based solely on MI using high-density EEG (HD-EEG): artifact correction (manual correction with vs. without Independent Component Analysis [ICA]), region of interest (ROI; motor area vs. whole brain), and machine-learning algorithm (support-vector machine [SVM] vs. k-nearest neighbor [KNN]). Results Results revealed no significant effects of artifact correction and ROI on predicting participant performance (F1) and classifier performance (AUC) scores (all ps > 0.05) in the SVM classification model. In the KNN model, ROI had a significant influence on the classifier performance [F(1,8.939) = 7.585, p = 0.023]. There was no evidence for artifact correction and ROI selection changing the prediction of participants performance and classifier performance in EEG-based mental MI if using SVM-based classification (71-100% correct classifications across different signal preprocessing methods). The variance in the prediction of participant performance was significantly higher when the experiment started with a resting-state compared to a mental MI task block [X2(1) = 5.849, p = 0.016]. Discussion Overall, we could show that classification is stable across different modes of EEG signal preprocessing when using SVM models. Exploratory analysis gave a hint toward potential effects of the sequence of task execution on the prediction of participant performance, which should be taken into account in future studies.
Collapse
Affiliation(s)
- Martin Justinus Rosenfelder
- Institute of Psychology and Education, Clinical and Biological Psychology, Ulm University, Ulm, Germany
- Therapiezentrum Burgau, Burgau, Germany
| | - Myra Spiliopoulou
- Knowledge Management and Discovery Lab, Faculty of Computer Science, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | | | - Rüdiger Pryss
- Institute of Databases and Information Systems, Ulm University, Ulm, Germany
- Institute of Clinical Epidemiology and Biometry, University of Würzburg, Würzburg, Germany
| | - Patrick Fissler
- Institute of Psychology and Education, Clinical and Biological Psychology, Ulm University, Ulm, Germany
- Psychiatric Services Thurgau, Münsterlingen, Switzerland
- University Hospital for Psychiatry and Psychotherapy, Paracelsus Medical University, Salzburg, Austria
| | - Mario della Piedra Walter
- Therapiezentrum Burgau, Burgau, Germany
- Faculty 2: Biology/Chemistry, University of Bremen, Bremen, Germany
| | - Iris-Tatjana Kolassa
- Institute of Psychology and Education, Clinical and Biological Psychology, Ulm University, Ulm, Germany
| | - Andreas Bender
- Therapiezentrum Burgau, Burgau, Germany
- Department of Neurology, University of Munich, Munich, Germany
| |
Collapse
|
8
|
Tao T, Jia Y, Xu G, Liang R, Zhang Q, Chen L, Gao Y, Chen R, Zheng X, Yu Y. Enhancement of motor imagery training efficiency by an online adaptive training paradigm integrated with error related potential. J Neural Eng 2023; 20. [PMID: 36608339 DOI: 10.1088/1741-2552/acb102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/06/2023] [Indexed: 01/07/2023]
Abstract
Objective. Motor imagery (MI) is a process of autonomously modulating the motor area to rehearse action mentally without actual execution. Based on the neuroplasticity of the cerebral cortex, MI can promote the functional rehabilitation of the injured cerebral cortex motor area. However, it usually takes several days to a few months to train individuals to acquire the necessary MI ability to control rehabilitation equipment in current studies, which greatly limits the clinical application of rehabilitation training systems based on the MI brain-computer interface (BCI).Approach. A novel MI training paradigm combined with the error related potential (ErrP) is proposed, and online adaptive training of the MI classifier was performed using ErrP. ErrP is used to correct the output of the MI classification to obtain a higher accuracy of kinesthetic feedback based on the imagination intention of subjects while generating simulated labels for MI online adaptive training. In this way, we improved the MI training efficiency. Thirteen subjects were randomly divided into an experimental group using the proposed paradigm and a control group using the traditional MI training paradigm to participate in six MI training experiments.Main results. The proposed paradigm enabled the experimental group to obtain a higher event-related desynchronization modulation level in the contralateral brain region compared with the control group and 69.76% online classification accuracy of MI after three MI training experiments. The online classification accuracy reached 72.76% and the whole system recognized the MI intention of the subjects with an online accuracy of 82.61% after six experiments.Significance. Compared with the conventional unimodal MI training strategy, the proposed approach enables subjects to use the MI-BCI based system directly and achieve a better performance after only three training experiments with training left and right hands simultaneously. This greatly improves the usability of the MI-BCI-based rehabilitation system and makes it more convenient for clinical use.
Collapse
Affiliation(s)
- Tangfei Tao
- Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi'an Jiaotong University, Xi'an, People's Republic of China.,School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yagang Jia
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Guanghua Xu
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, People's Republic of China.,State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, People's Republic of China.,The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Renghao Liang
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Qiuxiang Zhang
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Longting Chen
- School of Mechanical and Electrical Engineering, Central South University, Changsha, People's Republic of China
| | - Yuxiang Gao
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Ruiquan Chen
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Xiaowei Zheng
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yunhui Yu
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, People's Republic of China
| |
Collapse
|
9
|
Exploiting Asymmetric EEG Signals with EFD in Deep Learning Domain for Robust BCI. Symmetry (Basel) 2022. [DOI: 10.3390/sym14122677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Motor imagery (MI) is a domineering paradigm in brain–computer interface (BCI) composition, personifying the imaginary limb motion into digital commandments for neural rehabilitation and automation exertions, while many researchers fathomed myriad solutions for asymmetric MI EEG signals classification, the existence of a robust, non-complex, and subject-invariant system is far-reaching. Thereupon, we put forward an MI EEG segregation pipeline in the deep-learning domain in an effort to curtail the existing limitations. Our method amalgamates multiscale principal component analysis (MSPCA), a novel empirical Fourier decomposition (EFD) signal resolution method with Hilbert transform (HT), followed by four pre-trained convolutional neural networks for automatic feature estimation and segregation. The conceived architecture is validated upon three binary class datasets: IVa, IVb from BCI Competition III, GigaDB from the GigaScience repository, and one tertiary class dataset V from BCI competition III. The average 10-fold outcomes capitulate 98.63%, 96.33%, and 89.96%, the highest classification accuracy for the aforesaid datasets accordingly using the AlexNet CNN model in a subject-dependent context, while in subject-independent cases, the highest success score was 97.69%, outperforming the contemporary studies by a fair margin. Further experiments such as the resolution scale of EFD, comparison with other signal decomposition (SD) methods, deep feature extraction, and classification with machine learning methods also accredits the supremacy of our proposed EEG signal processing pipeline. The overall findings imply that pre-trained models are reliable in identifying EEG signals due to their capacity to maintain the time-frequency structure of EEG signals, non-complex architecture, and their potential for robust classification performance.
Collapse
|
10
|
Akbari H, Sadiq MT, Siuly S, Li Y, Wen P. Identification of normal and depression EEG signals in variational mode decomposition domain. Health Inf Sci Syst 2022; 10:24. [PMID: 36061530 PMCID: PMC9437202 DOI: 10.1007/s13755-022-00187-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/29/2022] [Indexed: 10/14/2022] Open
Abstract
Early detection of depression is critical in assisting patients in receiving the best therapy possible to avoid negative repercussions. Depression detection using electroencephalogram (EEG) signals is a simple, low-cost, convenient, and accurate approach. This paper proposes a six-stage novel method for detecting depression using EEG signals. First, EEG signals are recorded from 44 subjects, with 22 subjects being normal and 22 subjects being depressed. Second, a simple notch filter with EEG signals differencing approach is employed for effective preprocessing. Third, the variational mode decomposition (VMD) approach is implemented for nonlinear and non-stationary EEG signals analysis, resulting in many modes. Fourth, mutual information-based novel modes selection criterion is proposed to select the most informative modes. In the fifth step, a combination of linear and nonlinear features are extracted from selected modes and at last, classification is performed with neural networks. In this study, a novel single feature is also proposed, which is made using Log energy, norm entropies and fluctuation index, which delivers 100% classification accuracy, sensitivity and specificity. By using these features, a novel depression diagnostic index is also proposed. This integrated index would assist in quicker and more objective identification of normal and depression EEG signals. The proposed computerized framework and the DDI can help health workers, large enterprises, and product developers build a real-time system.
Collapse
Affiliation(s)
- Hesam Akbari
- Department of Biomedical Engineering, Islamic Azad University, Tehran, 1584715414 Iran
| | - Muhammad Tariq Sadiq
- School of Architecture, Technology and Engineering, University of Brighton, Brighton, BN2 4AT UK
| | - Siuly Siuly
- Institute for Sustainable Industries & Liveable Cities, Victoria University, Melbourne, 3011 Australia
| | - Yan Li
- School of Mathematics Physics and Computing, University of Southern Queensland, Toowoomba Campus, 4350 Australia
| | - Paul Wen
- School of Engineering, Victoria University, Melbourne, University of Southern Queensland, Toowoomba Campus, 4350 Australia
| |
Collapse
|
11
|
Chaudhary P, Varshney YV, Srivastava G, Bhatia S. Motor imagery classification using sparse nonnegative matrix factorization and convolutional neural networks. Neural Comput Appl 2022. [DOI: 10.1007/s00521-022-07861-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Arpaia P, Esposito A, Natalizio A, Parvis M. How to successfully classify EEG in motor imagery BCI: a metrological analysis of the state of the art. J Neural Eng 2022; 19. [PMID: 35640554 DOI: 10.1088/1741-2552/ac74e0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 05/31/2022] [Indexed: 11/11/2022]
Abstract
Objective. Processing strategies are analysed with respect to the classification of electroencephalographic signals related to brain-computer interfaces based on motor imagery. A review of literature is carried out to understand the achievements in motor imagery classification, the most promising trends, and the challenges in replicating these results. Main focus is placed on performance by means of a rigorous metrological analysis carried out in compliance with the international vocabulary of metrology. Hence, classification accuracy and its uncertainty are considered, as well as repeatability and reproducibility.Approach. The paper works included in the review concern the classification of electroencephalographic signals in motor-imagery- based brain-computer interfaces. Article search was carried out in accordance with the PRISMA standard and 89 studies were included.Main results. Statistically-based analyses show that brain-inspired approaches are increasingly proposed, and that these are particularly successful in discriminating against multiple classes. Notably, many proposals involve convolutional neural networks. Instead, classical machine learning approaches are still effective for binary classifications. Many proposals combine common spatial pattern, least absolute shrinkage and selection operator, and support vector machines. Regarding reported classification accuracies, performance above the upper quartile is in the 85 % to 100 % range for the binary case and in the 83 % to 93 % range for multi-class one. Associated uncertainties are up to 6 % while repeatability for a predetermined dataset is up to 8 %. Reproducibility assessment was instead prevented by lack of standardization in experiments.Significance. By relying on the analysed studies, the reader is guided towards the development of a successful processing strategy as a crucial part of a brain-computer interface. Moreover, it is suggested that future studies should extend these approaches on data from more subjects and with custom experiments, even by investigating online operation. This would also enable the quantification of results reproducibility.
Collapse
Affiliation(s)
- Pasquale Arpaia
- Centro Interdipartimentale di Ricerca in Management Sanitario e Innovazione in Sanità, Università degli Studi di Napoli Federico II, Via Claudio, 21, Napoli, Campania, 80125, ITALY
| | - Antonio Esposito
- Department of Electronics and Telecommunications (DET), Politecnico di Torino, Corso Castelfidardo, 39, Torino, 10129, ITALY
| | - Angela Natalizio
- Department of Electronics and Telecommunications (DET), Politecnico di Torino, Corso Castelfidardo, 39, Torino, Piemonte, 10129, ITALY
| | - Marco Parvis
- Department of Electronics and Telecommunications (DET), Politecnico di Torino, Corso Castelfidardo, 39, Torino, Piemonte, 10129, ITALY
| |
Collapse
|
13
|
The quantitative application of channel importance in movement intention decoding. Biocybern Biomed Eng 2022. [DOI: 10.1016/j.bbe.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Robustly Effective Approaches on Motor Imagery-Based Brain Computer Interfaces. COMPUTERS 2022. [DOI: 10.3390/computers11050061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Motor Imagery Brain Computer Interfaces (MI-BCIs) are systems that receive the users’ brain activity as an input signal in order to communicate between the brain and the interface or an action to be performed through the detection of the imagination of a movement. Brainwaves’ features are crucial for the performance of the interface to be increased. The robustness of these features must be ensured in order for the effectiveness to remain high in various subjects. The present work consists of a review, which includes scientific publications related to the use of robust feature extraction methods in Motor Imagery from 2017 until today. The research showed that the majority of the works focus on spatial features through Common Spatial Patterns (CSP) methods (44.26%). Based on the combination of accuracy percentages and K-values, which show the effectiveness of each approach, Wavelet Transform (WT) has shown higher robustness than CSP and PSD methods in the majority of the datasets used for comparison and also in the majority of the works included in the present review, although they had a lower usage percentage in the literature (16.65%). The research showed that there was an increase in 2019 of the detection of spatial features to increase the robustness of an approach, but the time-frequency features, or a combination of those, achieve better results with their increase starting from 2019 onwards. Additionally, Wavelet Transforms and their variants, in combination with deep learning, manage to achieve high percentages thus making a method robustly accurate.
Collapse
|
15
|
Sadiq MT, Aziz MZ, Almogren A, Yousaf A, Siuly S, Rehman AU. Exploiting pretrained CNN models for the development of an EEG-based robust BCI framework. Comput Biol Med 2022; 143:105242. [PMID: 35093844 DOI: 10.1016/j.compbiomed.2022.105242] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 11/25/2022]
Abstract
Identifying motor and mental imagery electroencephalography (EEG) signals is imperative to realizing automated, robust brain-computer interface (BCI) systems. In the present study, we proposed a pretrained convolutional neural network (CNN)-based new automated framework feasible for robust BCI systems with small and ample samples of motor and mental imagery EEG training data. The framework is explored by investigating the implications of different limiting factors, such as learning rates and optimizers, processed versus unprocessed scalograms, and features derived from untuned pretrained models in small, medium, and large pretrained CNN models. The experiments were performed on three public datasets obtained from BCI Competition III. The datasets were denoised with multiscale principal component analysis, and time-frequency scalograms were obtained by employing a continuous wavelet transform. The scalograms were fed into several variants of ten pretrained models for feature extraction and identification of different EEG tasks. The experimental results showed that ShuffleNet yielded the maximum average classification accuracy of 99.52% using an RMSProp optimizer with a learning rate of 0.000 1. It was observed that low learning rates converge to more optimal performances compared to high learning rates. Moreover, noisy scalograms and features extracted from untuned networks resulted in slightly lower performance than denoised scalograms and tuned networks, respectively. The overall results suggest that pretrained models are robust when identifying EEG signals because of their ability to preserve the time-frequency structure of EEG signals and promising classification outcomes.
Collapse
Affiliation(s)
- Muhammad Tariq Sadiq
- Department of Electrical Engineering, The University of Lahore, Lahore, 54000, Pakistan.
| | - Muhammad Zulkifal Aziz
- Department of Electrical Engineering, Government College University, Lahore, 54000, Pakistan.
| | - Ahmad Almogren
- Department of Computer Science, College of Computer and Information Sciences, King Saud University, Riyadh, 11633, Saudi Arabia.
| | - Adnan Yousaf
- Department of Electrical Engineering, Superior University, Lahore, 54000, Pakistan.
| | - Siuly Siuly
- Institute for Sustainable Industries & Liveable Cities, Victoria University, Melbourne, 14428, Australia.
| | - Ateeq Ur Rehman
- Department of Electrical Engineering, Government College University, Lahore, 54000, Pakistan.
| |
Collapse
|
16
|
Yu X, Aziz MZ, Sadiq MT, Jia K, Fan Z, Xiao G. Computerized Multidomain EEG Classification System: A New Paradigm. IEEE J Biomed Health Inform 2022; 26:3626-3637. [PMID: 35157605 DOI: 10.1109/jbhi.2022.3151570] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The recent advancements in electroencephalogram (EEG) signals classification largely center around the domainspecific solutions that hinder the algorithm cross-discipline adaptability. This study introduces a computer-aided broad learning EEG system (CABLS) for the classification of six distinct EEG domains under a unified sequential framework. Specifically, this paper proposes three novel modules namely, complex variational mode decomposition (CVMD), ensemble optimization-based features selection (EOFS), and t-distributed stochastic neighbor embeddingbased samples reduction (TSNE-SR) methods respectively for the realization o CABLES. Extensive experiments are carried out on seven different datasets from diverse disciplines using different variants of the neural network, extreme learning machine, and machine learning classifiers employing a 10-fold cross-validation strategy. Results compared with existing studies reveal that the highest classification accuracy of 99.1%, 97.8%, 94.3%, 91.5%, 98.9%, 95.3%, and 92% is achieved for the motor imagery dataset A, dataset B, slow cortical potentials, epilepsy, alcoholic, and schizophrenia EEG datasets respectively. The overall empirical analysis authenticates that the proposed CABLES framework outperforms the existing domain-specific methods in terms of classification accuracies and multirole adaptability, thus can be endorsed as an effective automated neural rehabilitation system.
Collapse
|
17
|
Exploiting Feature Selection and Neural Network Techniques for Identification of Focal and Nonfocal EEG Signals in TQWT Domain. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:6283900. [PMID: 34659691 PMCID: PMC8418932 DOI: 10.1155/2021/6283900] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/22/2021] [Accepted: 08/04/2021] [Indexed: 11/17/2022]
Abstract
For drug resistance patients, removal of a portion of the brain as a cause of epileptic seizures is a surgical remedy. However, before surgery, the detailed analysis of the epilepsy localization area is an essential and logical step. The Electroencephalogram (EEG) signals from these areas are distinct and are referred to as focal, while the EEG signals from other normal areas are known as nonfocal. The visual inspection of multiple channels for detecting the focal EEG signal is time-consuming and prone to human error. To address this challenge, we propose a novel method based on differential operator and Tunable Q-factor wavelet transform (TQWT) to distinguish the focal and nonfocal signals. For this purpose, first, the EEG signal was differenced and then decomposed by TQWT. Second, several entropy-based features were derived from the TQWT subbands. Third, the efficacy of the six binary feature selection algorithms, binary bat algorithm (BBA), binary differential evolution (BDE) algorithm, firefly algorithm (FA), genetic algorithm (GA), grey wolf optimization (GWO), and particle swarm optimization (PSO), was evaluated. In the end, the selected features were fed to several machine learning and neural network classifiers. We observed that the PSO with neural networks provides an effective solution for the application of focal EEG signal detection. The proposed framework resulted in an average classification accuracy of 97.68%, a sensitivity of 97.26%, and a specificity of 98.11% in a tenfold cross-validation strategy, which is higher than the state of the art used in the public Bern-Barcelona EEG database.
Collapse
|
18
|
Sadiq MT, Akbari H, Siuly S, Yousaf A, Rehman AU. A novel computer-aided diagnosis framework for EEG-based identification of neural diseases. Comput Biol Med 2021; 138:104922. [PMID: 34656865 DOI: 10.1016/j.compbiomed.2021.104922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 10/20/2022]
Abstract
Recent advances in electroencephalogram (EEG) signal classification have primarily focused on domain-specific approaches, which impede algorithm cross-discipline capability. This study introduces a new computer-aided diagnosis (CAD) system for the classification of two distinct EEG domains under a unified sequential framework. The key motivation to consider two neural diseases by one framework is to develop a unified algorithm for EEG classification. The main contributions of this study are five-fold. First, EEG signals are decomposed into 10 intrinsic mode functions (IMFs) with the help of empirical wavelet transform. Second, a novel two-dimensional (2D) modeling of IMFs is plotted to visualize the complexity of EEG signals. Third, several new geometrical features are extracted to analyze the dynamic and chaotic essence. Fourth, significant features are selected by binary particle swarm optimization algorithm (B-PSO). Fifth, selected features are fed to the k-nearest neighbor classifier for EEG signal classification purposes. All the experiments are executed on one depression and two epileptic EEG datasets in a leave one out cross-validation strategy. The proposed CAD system provides an average classification accuracy of 93.35% in depression detection, 99.33% for regular against ictal, and 97.33% for interictal versus ictal respectively. The overall empirical analysis authenticates that the proposed CAD outperforms the existing domain-specific methods in terms of classification accuracies and multirole adaptability, thus, can be endorsed as an effective automated neural rehabilitation system.
Collapse
Affiliation(s)
- Muhammad Tariq Sadiq
- School of Automation, Northwestern Polytechnical University, Xi'an, 710072, China; Department of Electrical Engineering, The University of Lahore, Lahore, 54000, Pakistan.
| | - Hesam Akbari
- Department of Biomedical Engineering, Islamic Azad University, Tehran, 1411718541, Iran.
| | - Siuly Siuly
- Institute for Sustainable Industries & Liveable Cities, Victoria University, Melbourne, 14428, Australia.
| | - Adnan Yousaf
- Department of Electrical Engineering, Superior University, Lahore, 54000, Pakistan.
| | - Ateeq Ur Rehman
- Department of Electrical Engineering, Government College University, Lahore, 54000, Pakistan.
| |
Collapse
|
19
|
Janisch J, Mitoyen C, Perinot E, Spezie G, Fusani L, Quigley C. Video Recording and Analysis of Avian Movements and Behavior: Insights from Courtship Case Studies. Integr Comp Biol 2021; 61:1378-1393. [PMID: 34037219 PMCID: PMC8516111 DOI: 10.1093/icb/icab095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Video recordings are useful tools for advancing our understanding of animal movements and behavior. Over the past decades, a burgeoning area of behavioral research has put forward innovative methods to investigate animal movement using video analysis, which includes motion capture and machine learning algorithms. These tools are particularly valuable for the study of elaborate and complex motor behaviors, but can be challenging to use. We focus in particular on elaborate courtship displays, which commonly involve rapid and/or subtle motor patterns. Here, we review currently available tools and provide hands-on guidelines for implementing these techniques in the study of avian model species. First, we suggest a set of possible strategies and solutions for video acquisition based on different model systems, environmental conditions, and time or financial budget. We then outline the available options for video analysis and illustrate how different analytical tools can be chosen to draw inference about animal motor performance. Finally, a detailed case study describes how these guidelines have been implemented to study courtship behavior in golden-collared manakins (Manacus vitellinus).
Collapse
Affiliation(s)
- Judith Janisch
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, 1160 Vienna, Austria
| | - Clementine Mitoyen
- Department of Cognitive Biology, University of Vienna, 1090 Vienna, Austria
| | - Elisa Perinot
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, 1160 Vienna, Austria
| | - Giovanni Spezie
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, 1160 Vienna, Austria
| | - Leonida Fusani
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, 1160 Vienna, Austria
- Department of Cognitive Biology, University of Vienna, 1090 Vienna, Austria
| | - Cliodhna Quigley
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, 1160 Vienna, Austria
- Department of Cognitive Biology, University of Vienna, 1090 Vienna, Austria
- Vienna Cognitive Science Hub, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
20
|
Mridha MF, Das SC, Kabir MM, Lima AA, Islam MR, Watanobe Y. Brain-Computer Interface: Advancement and Challenges. SENSORS 2021; 21:s21175746. [PMID: 34502636 PMCID: PMC8433803 DOI: 10.3390/s21175746] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/15/2021] [Accepted: 08/20/2021] [Indexed: 02/04/2023]
Abstract
Brain-Computer Interface (BCI) is an advanced and multidisciplinary active research domain based on neuroscience, signal processing, biomedical sensors, hardware, etc. Since the last decades, several groundbreaking research has been conducted in this domain. Still, no comprehensive review that covers the BCI domain completely has been conducted yet. Hence, a comprehensive overview of the BCI domain is presented in this study. This study covers several applications of BCI and upholds the significance of this domain. Then, each element of BCI systems, including techniques, datasets, feature extraction methods, evaluation measurement matrices, existing BCI algorithms, and classifiers, are explained concisely. In addition, a brief overview of the technologies or hardware, mostly sensors used in BCI, is appended. Finally, the paper investigates several unsolved challenges of the BCI and explains them with possible solutions.
Collapse
Affiliation(s)
- M. F. Mridha
- Department of Computer Science and Engineering, Bangladesh University of Business and Technology, Dhaka 1216, Bangladesh; (M.F.M.); (S.C.D.); (M.M.K.); (A.A.L.)
| | - Sujoy Chandra Das
- Department of Computer Science and Engineering, Bangladesh University of Business and Technology, Dhaka 1216, Bangladesh; (M.F.M.); (S.C.D.); (M.M.K.); (A.A.L.)
| | - Muhammad Mohsin Kabir
- Department of Computer Science and Engineering, Bangladesh University of Business and Technology, Dhaka 1216, Bangladesh; (M.F.M.); (S.C.D.); (M.M.K.); (A.A.L.)
| | - Aklima Akter Lima
- Department of Computer Science and Engineering, Bangladesh University of Business and Technology, Dhaka 1216, Bangladesh; (M.F.M.); (S.C.D.); (M.M.K.); (A.A.L.)
| | - Md. Rashedul Islam
- Department of Computer Science and Engineering, University of Asia Pacific, Dhaka 1216, Bangladesh
- Correspondence:
| | - Yutaka Watanobe
- Department of Computer Science and Engineering, University of Aizu, Aizu-Wakamatsu 965-8580, Japan;
| |
Collapse
|
21
|
Akbari H, Ghofrani S, Zakalvand P, Tariq Sadiq M. Schizophrenia recognition based on the phase space dynamic of EEG signals and graphical features. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
22
|
Classification of normal and depressed EEG signals based on centered correntropy of rhythms in empirical wavelet transform domain. Health Inf Sci Syst 2021; 9:9. [PMID: 33604030 DOI: 10.1007/s13755-021-00139-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 01/13/2021] [Indexed: 02/07/2023] Open
Abstract
A widespread brain disorder of present days is depression which influences 264 million of the world's population. Depression may cause diverse undesirable consequences, including poor physical health, suicide, and self-harm if left untreated. Depression may have adverse effects on the personal, social, and professional lives of individuals. Both neurologists and researchers are trying to detect depression by challenging brain signals of Electroencephalogram (EEG) with chaotic and non-stationary characteristics. It is essential to detect early-stage depression to help patients obtain the best treatment promptly to prevent harmful consequences. In this paper, we proposed a new method based on centered correntropy (CC) and empirical wavelet transform (EWT) for the classification of normal and depressed EEG signals. The EEG signals are decomposed to rhythms by EWT and then CC of rhythms is computed as the discrimination feature and fed to K-nearest neighbor and support vector machine (SVM) classifiers. The proposed method was evaluated using EEG signals recorded from 22 depression and 22 normal subjects. We achieved 98.76%, 98.47%, and 99.05% average classification accuracy (ACC), sensitivity, and specificity in a 10-fold cross-validation strategy by using an SVM classifier. Such efficient results conclude that the method proposed can be used as a fast and accurate computer-aided detection system for the diagnosis of patients with depression in clinics and hospitals.
Collapse
|
23
|
Detection of focal and non-focal EEG signals using non-linear features derived from empirical wavelet transform rhythms. Phys Eng Sci Med 2021; 44:157-171. [PMID: 33417158 DOI: 10.1007/s13246-020-00963-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/15/2020] [Indexed: 01/18/2023]
Abstract
Surgery is recommended for epilepsy diagnosis in cases where patients do not respond well to anti-epilepsy medications. Successful surgery is essentially dependent on the area suffered from epilepsy, i.e., focal area. Electroencephalogram (EEG) signals are considered a powerful tool to identify focal or non-focal (normal) areas. In this work, we propose an automated method for focal and non-focal EEG signal identification, taking into account non-linear features derived from rhythms in the empirical wavelet transform (EWT) domain. The research paradigm is related to the decomposition of EEG signals into the delta, theta, alpha, beta, and gamma rhythms through the development of the EWT. Specifically, various non-linear features are extracted from rhythms composed of Stein's unbiased risk estimation entropy, threshold entropy, centered correntropy, and information potential. From a statistical point of view, Kruskal-Wallis (KW) statistical test is then used to identify the significant features. The significant features obtained from the KW test are fed to support vector machine (SVM) and k-nearest neighbor (KNN) classifiers. The SURE entropy provides an average classification accuracy of 93% and 82.6% for small and entire datasets by utilizing SVM and KNN classifiers with a tenfold cross-validation method, respectively. It is observed that the proposed method is better and competitive in comparison with other studies for small and large data, respectively. The obtained outcome concludes that the proposed framework could be used for people with epilepsy and can help the physicians to validate the assessment.
Collapse
|
24
|
Fan Z, Jamil M, Sadiq MT, Huang X, Yu X. Exploiting Multiple Optimizers with Transfer Learning Techniques for the Identification of COVID-19 Patients. JOURNAL OF HEALTHCARE ENGINEERING 2020; 2020:8889412. [PMID: 33299538 PMCID: PMC7684157 DOI: 10.1155/2020/8889412] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/08/2020] [Accepted: 11/13/2020] [Indexed: 12/23/2022]
Abstract
Due to the rapid spread of COVID-19 and its induced death worldwide, it is imperative to develop a reliable tool for the early detection of this disease. Chest X-ray is currently accepted to be one of the reliable means for such a detection purpose. However, most of the available methods utilize large training data, and there is a need for improvement in the detection accuracy due to the limited boundary segment of the acquired images for symptom identifications. In this study, a robust and efficient method based on transfer learning techniques is proposed to identify normal and COVID-19 patients by employing small training data. Transfer learning builds accurate models in a timesaving way. First, data augmentation was performed to help the network for memorization of image details. Next, five state-of-the-art transfer learning models, AlexNet, MobileNetv2, ShuffleNet, SqueezeNet, and Xception, with three optimizers, Adam, SGDM, and RMSProp, were implemented at various learning rates, 1e-4, 2e-4, 3e-4, and 4e-4, to reduce the probability of overfitting. All the experiments were performed on publicly available datasets with several analytical measurements attained after execution with a 10-fold cross-validation method. The results suggest that MobileNetv2 with Adam optimizer at a learning rate of 3e-4 provides an average accuracy, recall, precision, and F-score of 97%, 96.5%, 97.5%, and 97%, respectively, which are higher than those of all other combinations. The proposed method is competitive with the available literature, demonstrating that it could be used for the early detection of COVID-19 patients.
Collapse
Affiliation(s)
- Zeming Fan
- School of Automation, Northwestern Polytechnical University, Xi'an 710129, China
| | - Mudasir Jamil
- School of Automation, Northwestern Polytechnical University, Xi'an 710129, China
| | - Muhammad Tariq Sadiq
- School of Automation, Northwestern Polytechnical University, Xi'an 710129, China
| | - Xiwei Huang
- Ministry of Education, Key Laboratory of RF Circuits and Systems, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Xiaojun Yu
- School of Automation, Northwestern Polytechnical University, Xi'an 710129, China
| |
Collapse
|