1
|
Pandian K, Kalayarasi J, Gopinath SCB. Metal-free Sulfur-doped graphitic carbon nitride-modified GCE-based electrocatalyst for the enhanced electrochemical determination of Omeprazole in Drug formulations and Biological Samples. Biotechnol Appl Biochem 2022; 69:2766-2779. [PMID: 35287249 DOI: 10.1002/bab.2321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/18/2022] [Indexed: 12/27/2022]
Abstract
This study presents a novel sulfur-doped graphitic carbon nitride (S@g-C3 N4 ) with a wider potential range as electrocatalyst for electrochemical sensor application. The S@g-C3 N4 nanosheets were successfully prepared with a ball milling method by mixing appropriate molar concentration required precursors. The as-synthesized heteroatom-doped graphitic carbon nitride is characterized by spectroscopic techniques including PL, DRS-UV, FT-IR, and Brunauer-Emmett-Teller equation. The morphological features were studied by FE-SEM and HR-TEM analysis. Chit-S@g-C3 N4 -modified glassy carbon electrode (GCE) was employed for the electrochemical detection of omeprazole (OMZ) use in drug formulations. We have noted an oxidation peak current response at a potential of +0.8 V versus Ag/AgCl in PBS medium (0.1 M, pH 7.0). Differential pulse voltammetry amperometry experimental method can be used to measure the concentration of OMZ for quantitative studies in known samples. Under the optimized experimental condition, the calibration plot was constructed by plotting the peak currents versus OMZ in the linear ranges from 6.0 × 10-7 to 26 × 10-5 M. The linear regression equation is estimated to be Ip (μA) = 0.9518 (C/μM) + 0.3340 with a good correlation coefficient of 0.9996. The lower determination limit was found to be 20 nM and the current sensitivity was calculated (31.722 μA μM-1 cm-2 ). The developed sensor was utilized successfully to determine the OMZ concentration in drug formulations and biological fluids. These results revealed that the Chit-S@g-C3 N4 -modified GCE showed excellent electroanalytical performance for the detection of OMZ at a low LOD, wider linear range, high sensitivity, good reproducibility, long-term storage stability, and selectivity with an acceptable relative standard deviation value.
Collapse
Affiliation(s)
- Kannaiyan Pandian
- Department of Inorganic Chemistry, University of Madras, Chennai, India
| | | | - Subash C B Gopinath
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Perlis, Malaysia.,Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, Perlis, Malaysia.,Centre of Excellence for Nanobiotechnology and Nanomedicine (CoExNano), Faculty of Applied Sciences, AIMST University, Semeling, Kedah, Malaysia
| |
Collapse
|
2
|
Pourmadadi M, Rajabzadeh-Khosroshahi M, Saeidi Tabar F, Ajalli N, Samadi A, Yazdani M, Yazdian F, Rahdar A, Díez-Pascual AM. Two-Dimensional Graphitic Carbon Nitride (g-C 3N 4) Nanosheets and Their Derivatives for Diagnosis and Detection Applications. J Funct Biomater 2022; 13:204. [PMID: 36412845 PMCID: PMC9680252 DOI: 10.3390/jfb13040204] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 12/14/2022] Open
Abstract
The early diagnosis of certain fatal diseases is vital for preventing severe consequences and contributes to a more effective treatment. Despite numerous conventional methods to realize this goal, employing nanobiosensors is a novel approach that provides a fast and precise detection. Recently, nanomaterials have been widely applied as biosensors with distinctive features. Graphite phase carbon nitride (g-C3N4) is a two-dimensional (2D) carbon-based nanostructure that has received attention in biosensing. Biocompatibility, biodegradability, semiconductivity, high photoluminescence yield, low-cost synthesis, easy production process, antimicrobial activity, and high stability are prominent properties that have rendered g-C3N4 a promising candidate to be used in electrochemical, optical, and other kinds of biosensors. This review presents the g-C3N4 unique features, synthesis methods, and g-C3N4-based nanomaterials. In addition, recent relevant studies on using g-C3N4 in biosensors in regard to improving treatment pathways are reviewed.
Collapse
Affiliation(s)
- Mehrab Pourmadadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14179-35840, Iran
| | | | - Fatemeh Saeidi Tabar
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14179-35840, Iran
| | - Narges Ajalli
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14179-35840, Iran
| | - Amirmasoud Samadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14179-35840, Iran
- Department of Chemical and Biomolecular Engineering, 6000 Interdisciplinary Science & Engineering Building (ISEB), Irvine, CA 92617, USA
| | - Mahsa Yazdani
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14179-35840, Iran
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran 14179-35840, Iran
| | - Abbas Rahdar
- Department of Physics, Faculty of science, University of Zabol, Zabol 538-98615, Iran
| | - Ana M. Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
3
|
Kobkeatthawin T, Chaveanghong S, Trakulmututa J, Amornsakchai T, Kajitvichyanukul P, Smith SM. Photocatalytic Activity of TiO 2/g-C 3N 4 Nanocomposites for Removal of Monochlorophenols from Water. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2852. [PMID: 36014720 PMCID: PMC9414261 DOI: 10.3390/nano12162852] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
This research employed g-C3N4 nanosheets in the hydrothermal synthesis of TiO2/g-C3N4 hybrid photocatalysts. The TiO2/g-C3N4 heterojunctions, well-dispersed TiO2 nanoparticles on the g-C3N4 nanosheets, are effective photocatalysts for the degradation of monochlorophenols (MCPs: 2-CP, 3-CP, and 4-CP) which are prominent water contaminants. The removal efficiency of 2-CP and 4-CP reached 87% and 64%, respectively, after treatment of 25 ppm CP solutions with the photocatalyst (40TiO2/g-C3N4, 1 g/L) and irradiation with UV-Vis light. Treatment of CP solutions with g-C3N4 nanosheets or TiO2 alone in conjunction with irradiation gave removal efficiencies lower than 50%, which suggests the two act synergically to enhance the photocatalytic activity of the 40TiO2/g-C3N4 nanocomposite. Superoxide and hydroxyl radicals are key active species produced during CP photodegradation. In addition, the observed nitrogen and Ti3+ defects and oxygen vacancies in the TiO2/g-C3N4 nanocomposites may improve the light-harvesting ability of the composite and assist preventing rapid electron-hole recombination on the surface, enhancing the photocatalytic performance. In addition, interfacial interactions between the MCPs (low polarity) and thermally exfoliated carbon nitride in the TiO2/g-C3N4 nanocomposites may also enhance MCP degradation.
Collapse
Affiliation(s)
- Thawanrat Kobkeatthawin
- Center of Sustainable Energy and Green Materials and Department of Chemistry, Faculty of Science, Mahidol University, 999 Phuttamonthon Sai 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | - Suwilai Chaveanghong
- Center of Sustainable Energy and Green Materials and Department of Chemistry, Faculty of Science, Mahidol University, 999 Phuttamonthon Sai 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | - Jirawat Trakulmututa
- Center of Sustainable Energy and Green Materials and Department of Chemistry, Faculty of Science, Mahidol University, 999 Phuttamonthon Sai 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | - Taweechai Amornsakchai
- Center of Sustainable Energy and Green Materials and Department of Chemistry, Faculty of Science, Mahidol University, 999 Phuttamonthon Sai 4 Road, Salaya, Nakhon Pathom 73170, Thailand
- Center of Excellence for Innovation in Chemistry, 272 Rama VI Road, Rajthevi, Bangkok 10400, Thailand
| | - Puangrat Kajitvichyanukul
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, 239 Huay Kaew Road, Muang District, Chiang Mai 50200, Thailand
- Sustainable Engineering Research Center for Pollution and Environmental Management, Faculty of Engineering, Chiang Mai University, 239 Huay Kaew Road, Muang District, Chiang Mai 50200, Thailand
| | - Siwaporn Meejoo Smith
- Center of Sustainable Energy and Green Materials and Department of Chemistry, Faculty of Science, Mahidol University, 999 Phuttamonthon Sai 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| |
Collapse
|
4
|
Chen F, Tang Q, Ma T, Zhu B, Wang L, He C, Luo X, Cao S, Ma L, Cheng C. Structures, properties, and challenges of emerging
2D
materials in bioelectronics and biosensors. INFOMAT 2022. [DOI: 10.1002/inf2.12299] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Fan Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Qing Tang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Tian Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Bihui Zhu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Liyun Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Xianglin Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Sujiao Cao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
- National Clinical Research Center for Geriatrics, West China Hospital Sichuan University Chengdu China
| | - Lang Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
- National Clinical Research Center for Geriatrics, West China Hospital Sichuan University Chengdu China
- Department of Chemistry and Biochemistry Freie Universität Berlin Berlin Germany
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| |
Collapse
|
5
|
3D-printed hybrid-carbon-based electrodes for electroanalytical sensing applications. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2021.107098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|