1
|
Shaw P, Kumar N, Mumtaz S, Lim JS, Jang JH, Kim D, Sahu BD, Bogaerts A, Choi EH. Evaluation of non-thermal effect of microwave radiation and its mode of action in bacterial cell inactivation. Sci Rep 2021; 11:14003. [PMID: 34234197 PMCID: PMC8263747 DOI: 10.1038/s41598-021-93274-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 06/15/2021] [Indexed: 02/06/2023] Open
Abstract
A growing body of literature has recognized the non-thermal effect of pulsed microwave radiation (PMR) on bacterial systems. However, its mode of action in deactivating bacteria has not yet been extensively investigated. Nevertheless, it is highly important to advance the applications of PMR from simple to complex biological systems. In this study, we first optimized the conditions of the PMR device and we assessed the results by simulations, using ANSYS HFSS (High Frequency Structure Simulator) and a 3D particle-in-cell code for the electron behavior, to provide a better overview of the bacterial cell exposure to microwave radiation. To determine the sensitivity of PMR, Escherichia coli and Staphylococcus aureus cultures were exposed to PMR (pulse duration: 60 ns, peak frequency: 3.5 GHz) with power density of 17 kW/cm2 at the free space of sample position, which would induce electric field of 8.0 kV/cm inside the PBS solution of falcon tube in this experiment at 25 °C. At various discharges (D) of microwaves, the colony forming unit curves were analyzed. The highest ratios of viable count reductions were observed when the doses were increased from 20D to 80D, which resulted in an approximate 6 log reduction in E. coli and 4 log reduction in S. aureus. Moreover, scanning electron microscopy also revealed surface damage in both bacterial strains after PMR exposure. The bacterial inactivation was attributed to the deactivation of oxidation-regulating genes and DNA damage.
Collapse
Affiliation(s)
- Priyanka Shaw
- grid.411202.40000 0004 0533 0009Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897 Korea ,grid.5284.b0000 0001 0790 3681Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610 Wilrijk-Antwerp, Belgium
| | - Naresh Kumar
- grid.411202.40000 0004 0533 0009Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897 Korea ,grid.5284.b0000 0001 0790 3681Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610 Wilrijk-Antwerp, Belgium ,grid.464627.50000 0004 1775 2612Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Guwahati, Guwahati, Assam 781101 India
| | - Sohail Mumtaz
- grid.411202.40000 0004 0533 0009Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897 Korea
| | - Jun Sup Lim
- grid.411202.40000 0004 0533 0009Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897 Korea
| | - Jung Hyun Jang
- grid.411202.40000 0004 0533 0009Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897 Korea
| | - Doyoung Kim
- grid.411202.40000 0004 0533 0009Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897 Korea
| | - Bidya Dhar Sahu
- grid.464627.50000 0004 1775 2612Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Guwahati, Guwahati, Assam 781101 India
| | - Annemie Bogaerts
- grid.5284.b0000 0001 0790 3681Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610 Wilrijk-Antwerp, Belgium
| | - Eun Ha Choi
- grid.411202.40000 0004 0533 0009Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897 Korea
| |
Collapse
|