1
|
He X, Li H, Yu P, Wu H, Chen B. DP-MP: a novel cross-subject fatigue detection framework with DANN-based prototypical representation and mix-up pairwise learning. J Neural Eng 2025; 22:026049. [PMID: 38986468 DOI: 10.1088/1741-2552/ad618a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024]
Abstract
Objective. Electroencephalography (EEG) is widely recognized as an effective method for detecting fatigue. However, practical applications of EEG for fatigue detection in real-world scenarios are often challenging, particularly in cases involving subjects not included in the training datasets, owing to bio-individual differences and noisy labels. This study aims to develop an effective framework for cross-subject fatigue detection by addressing these challenges.Approach. In this study, we propose a novel framework, termed DP-MP, for cross-subject fatigue detection, which utilizes a domain-adversarial neural network-based prototypical representation in conjunction with Mix-up pairwise learning. Our proposed DP-MP framework aims to mitigate the impact of bio-individual differences by encoding fatigue-related semantic structures within EEG signals and exploring shared fatigue prototype features across individuals. Notably, to the best of our knowledge, this work is the first to conceptualize fatigue detection as a pairwise learning task, thereby effectively reducing the interference from noisy labels. Furthermore, we propose the Mix-up pairwise learning (MixPa) approach in the field of fatigue detection, which broadens the advantages of pairwise learning by introducing more diverse and informative relationships among samples.Main results. Cross-subject experiments were conducted on two benchmark databases, SEED-VIG and FTEF, achieving state-of-the-art performance with average accuracies of 88.14%and 97.41%, respectively. These promising results demonstrate our model's effectiveness and excellent generalization capability.Significance. This is the first time EEG-based fatigue detection has been conceptualized as a pairwise learning task, offering a novel perspective to this field. Moreover, our proposed DP-MP framework effectively tackles the challenges of bio-individual differences and noisy labels in the fatigue detection field and demonstrates superior performance. Our work provides valuable insights for future research, promoting the practical application of brain-computer interfaces for fatigue detection.
Collapse
Affiliation(s)
- Xiaopeng He
- National Key Laboratory of Human-Machine Hybrid Augmented Intelligence, National Engineering Research Center for Visual Information and Applications, and Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Haoyu Li
- National Key Laboratory of Human-Machine Hybrid Augmented Intelligence, National Engineering Research Center for Visual Information and Applications, and Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Peng Yu
- National Key Laboratory of Human-Machine Hybrid Augmented Intelligence, National Engineering Research Center for Visual Information and Applications, and Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Hao Wu
- School of Electrical Engineering, Xi'an University of Technology, Xi'an, People's Republic of China
| | - Badong Chen
- National Key Laboratory of Human-Machine Hybrid Augmented Intelligence, National Engineering Research Center for Visual Information and Applications, and Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an, People's Republic of China
| |
Collapse
|
2
|
Mirjalili S, Duarte A. Using machine learning to simultaneously quantify multiple cognitive components of episodic memory. Nat Commun 2025; 16:2856. [PMID: 40128238 PMCID: PMC11933255 DOI: 10.1038/s41467-025-58265-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 03/14/2025] [Indexed: 03/26/2025] Open
Abstract
Why do we remember some events but forget others? Previous studies attempting to decode successful vs. unsuccessful brain states to investigate this question have met with limited success, potentially due, in part, to assessing episodic memory as a unidimensional process, despite evidence that multiple domains contribute to episodic encoding. Using a machine learning algorithm known as "transfer learning", we leveraged visual perception, sustained attention, and selective attention brain states to better predict episodic memory performance from trial-to-trial encoding electroencephalography (EEG) activity. We found that this multidimensional treatment of memory decoding improved prediction performance compared to traditional, unidimensional, methods, with each cognitive domain explaining unique variance in decoding of successful encoding-related neural activity. Importantly, this approach could be applied to cognitive domains outside of memory. Overall, this study provides critical insight into the underlying reasons why some events are remembered while others are not.
Collapse
Affiliation(s)
- Soroush Mirjalili
- Department of Psychology, University of Texas at Austin, Austin, TX, 78712, USA.
| | - Audrey Duarte
- Department of Psychology, University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
3
|
Magalhães SS, Lucas-Ochoa AM, Gonzalez-Cuello AM, Fernández-Villalba E, Pereira Toralles MB, Herrero MT. The mind-machine connection: adaptive information processing and new technologies promoting mental health in older adults. Neuroscientist 2025:10738584251318948. [PMID: 39969013 DOI: 10.1177/10738584251318948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
The human brain demonstrates an exceptional adaptability, which encompasses the ability to regulate emotions, exhibit cognitive flexibility, and generate behavioral responses, all supported by neuroplasticity. Brain-computer interfaces (BCIs) employ adaptive algorithms and machine learning techniques to adapt to variations in the user's brain activity, allowing for customized interactions with external devices. Older adults may experience cognitive decline, which could affect the ability to learn and adapt to new technologies such as BCIs, but both (human brain and BCI) demonstrate adaptability in their responses. The human brain is skilled at quickly switching between tasks and regulating emotions, while BCIs can modify signal-processing algorithms to accommodate changes in brain activity. Furthermore, the human brain and BCI participate in knowledge acquisition; the first one strengthens cognitive abilities through exposure to new experiences, and the second one improves performance through ongoing adjustment and improvement. Current research seeks to incorporate emotional states into BCI systems to improve the user experience, despite the exceptional emotional regulation abilities of the human brain. The implementation of BCIs for older adults could be more effective, inclusive, and beneficial in improving their quality of life. This review aims to improve the understanding of brain-machine interfaces and their implications for mental health in older adults.
Collapse
Affiliation(s)
- S S Magalhães
- Clinical and Experimental Neuroscience (NiCE-IMIB Pascual Parilla), Institute for Aging Research, School of Medicine, University of Murcia, Murcia, Spain
- Institute of Health Sciences, Postgraduate Program in Interactive Processes of Organs and Systems, Federal University of Bahia (UFBA) of Brazil, Salvador, Brazil
| | - A M Lucas-Ochoa
- Clinical and Experimental Neuroscience (NiCE-IMIB Pascual Parilla), Institute for Aging Research, School of Medicine, University of Murcia, Murcia, Spain
| | - A M Gonzalez-Cuello
- Clinical and Experimental Neuroscience (NiCE-IMIB Pascual Parilla), Institute for Aging Research, School of Medicine, University of Murcia, Murcia, Spain
| | - E Fernández-Villalba
- Clinical and Experimental Neuroscience (NiCE-IMIB Pascual Parilla), Institute for Aging Research, School of Medicine, University of Murcia, Murcia, Spain
| | - M B Pereira Toralles
- Institute of Health Sciences, Postgraduate Program in Interactive Processes of Organs and Systems, Federal University of Bahia (UFBA) of Brazil, Salvador, Brazil
| | - M T Herrero
- Clinical and Experimental Neuroscience (NiCE-IMIB Pascual Parilla), Institute for Aging Research, School of Medicine, University of Murcia, Murcia, Spain
| |
Collapse
|
4
|
Pirasteh A, Shamseini Ghiyasvand M, Pouladian M. EEG-based brain-computer interface methods with the aim of rehabilitating advanced stage ALS patients. Disabil Rehabil Assist Technol 2024; 19:3183-3193. [PMID: 38400897 DOI: 10.1080/17483107.2024.2316312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/25/2024] [Accepted: 02/03/2024] [Indexed: 02/26/2024]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease that leads to progressive muscle weakness and paralysis, ultimately resulting in the loss of ability to communicate and control the environment. EEG-based Brain-Computer Interface (BCI) methods have shown promise in providing communication and control with the aim of rehabilitating ALS patients. In particular, P300-based BCI has been widely studied and used for ALS rehabilitation. Other EEG-based BCI methods, such as Motor Imagery (MI) based BCI and Hybrid BCI, have also shown promise in ALS rehabilitation. Nonetheless, EEG-based BCI methods hold great potential for improvement. This review article introduces and reviews FFT, WPD, CSP, CSSP, CSP, and GC feature extraction methods. The Common Spatial Pattern (CSP) is an efficient and common technique for extracting data properties used in BCI systems. In addition, Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), Neural Networks (NN), and Deep Learning (DL) classification methods were introduced and reviewed. SVM is the most appropriate classifier due to its insensitivity to the curse of dimensionality. Also, DL is used in the design of BCI systems and is a good choice for BCI systems based on motor imagery with big datasets. Despite the progress made in the field, there are still challenges to overcome, such as improving the accuracy and reliability of EEG signal detection and developing more intuitive and user-friendly interfaces By using BCI, disabled patients can communicate with their caregivers and control their environment using various devices, including wheelchairs, and robotic arms.
Collapse
Affiliation(s)
- Alireza Pirasteh
- Department of Biomedical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
| | | | - Majid Pouladian
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
5
|
Gordon SM, Dalangin B, Touryan J. Saccade size predicts onset time of object processing during visual search of an open world virtual environment. Neuroimage 2024; 298:120781. [PMID: 39127183 DOI: 10.1016/j.neuroimage.2024.120781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 08/12/2024] Open
Abstract
OBJECTIVE To date the vast majority of research in the visual neurosciences have been forced to adopt a highly constrained perspective of the vision system in which stimuli are processed in an open-loop reactive fashion (i.e., abrupt stimulus presentation followed by an evoked neural response). While such constraints enable high construct validity for neuroscientific investigation, the primary outcomes have been a reductionistic approach to isolate the component processes of visual perception. In electrophysiology, of the many neural processes studied under this rubric, the most well-known is, arguably, the P300 evoked response. There is, however, relatively little known about the real-world corollary of this component in free-viewing paradigms where visual stimuli are connected to neural function in a closed-loop. While growing evidence suggests that neural activity analogous to the P300 does occur in such paradigms, it is an open question when this response occurs and what behavioral or environmental factors could be used to isolate this component. APPROACH The current work uses convolutional networks to decode neural signals during a free-viewing visual search task in a closed-loop paradigm within an open-world virtual environment. From the decoded activity we construct fixation-locked response profiles that enable estimations of the variable latency of any P300 analogue around the moment of fixation. We then use these estimates to investigate which factors best reduce variable latency and, thus, predict the onset time of the response. We consider measurable, search-related factors encompassing top-down (i.e., goal driven) and bottom-up (i.e., stimulus driven) processes, such as fixation duration and salience. We also consider saccade size as an intermediate factor reflecting the integration of these two systems. MAIN RESULTS The results show that of these factors only saccade size reliably determines the onset time of P300 analogous activity for this task. Specifically, we find that for large saccades the variability in response onset is small enough to enable analysis using traditional ensemble averaging methods. SIGNIFICANCE The results show that P300 analogous activity does occur during closed-loop, free-viewing visual search while highlighting distinct differences between the open-loop version of this response and its real-world analogue. The results also further establish saccades, and saccade size, as a key factor in real-world visual processing.
Collapse
Affiliation(s)
| | | | - Jonathan Touryan
- DEVCOM Army Research Laboratory, Aberdeen Proving Ground, MD, USA
| |
Collapse
|
6
|
Dong R, Zhang X, Li H, Lu Z, Li C, Zhu A. Cross-domain prediction approach of human lower limb voluntary movement intention for exoskeleton robot based on EEG signals. Front Bioeng Biotechnol 2024; 12:1448903. [PMID: 39246298 PMCID: PMC11377221 DOI: 10.3389/fbioe.2024.1448903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/29/2024] [Indexed: 09/10/2024] Open
Abstract
Background and Objective Exoskeleton robot control should ideally be based on human voluntary movement intention. The readiness potential (RP) component of the motion-related cortical potential is observed before movement in the electroencephalogram and can be used for intention prediction. However, its single-trial features are weak and highly variable, and existing methods cannot achieve high cross-temporal and cross-subject accuracies in practical online applications. Therefore, this work aimed to combine a deep convolutional neural network (CNN) framework with a transfer learning (TL) strategy to predict the lower limb voluntary movement intention, thereby improving the accuracy while enhancing the model generalization capability; this would also provide sufficient processing time for the response of the exoskeleton robotic system and help realize robot control based on the intention of the human body. Methods The signal characteristics of the RP for lower limb movement were analyzed, and a parameter TL strategy based on CNN was proposed to predict the intention of voluntary lower limb movements. We recruited 10 subjects for offline and online experiments. Multivariate empirical-mode decomposition was used to remove the artifacts, and the moment of onset of voluntary movement was labeled using lower limb electromyography signals during network training. Results The RP features can be observed from multiple data overlays before the onset of voluntary lower limb movements, and these features have long latency periods. The offline experimental results showed that the average movement intention prediction accuracy was 95.23% ± 1.25% for the right leg and 91.21% ± 1.48% for the left leg, which showed good cross-temporal and cross-subject generalization while greatly reducing the training time. Online movement intention prediction can predict results about 483.9 ± 11.9 ms before movement onset with an average accuracy of 82.75%. Conclusion The proposed method has a higher prediction accuracy with a lower training time, has good generalization performance for cross-temporal and cross-subject aspects, and is well-prioritized in terms of the temporal responses; these features are expected to lay the foundation for further investigations on exoskeleton robot control.
Collapse
Affiliation(s)
- Runlin Dong
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaodong Zhang
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Shaanxi Key Laboratory of Intelligent Robots, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hanzhe Li
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhufeng Lu
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Cunxin Li
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Aibin Zhu
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Shaanxi Key Laboratory of Intelligent Robots, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
7
|
Kueper N, Kim SK, Kirchner EA. Avoidance of specific calibration sessions in motor intention recognition for exoskeleton-supported rehabilitation through transfer learning on EEG data. Sci Rep 2024; 14:16690. [PMID: 39030206 PMCID: PMC11271642 DOI: 10.1038/s41598-024-65910-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/25/2024] [Indexed: 07/21/2024] Open
Abstract
Exoskeleton-based support for patients requires the learning of individual machine-learning models to recognize movement intentions of patients based on the electroencephalogram (EEG). A major issue in EEG-based movement intention recognition is the long calibration time required to train a model. In this paper, we propose a transfer learning approach that eliminates the need for a calibration session. This approach is validated on healthy subjects in this study. We will use the proposed approach in our future rehabilitation application, where the movement intention of the affected arm of a patient can be inferred from the EEG data recorded during bilateral arm movements enabled by the exoskeleton mirroring arm movements from the unaffected to the affected arm. For the initial evaluation, we compared two trained models for predicting unilateral and bilateral movement intentions without applying a classifier transfer. For the main evaluation, we predicted unilateral movement intentions without a calibration session by transferring the classifier trained on data from bilateral movement intentions. Our results showed that the classification performance for the transfer case was comparable to that in the non-transfer case, even with only 4 or 8 EEG channels. Our results contribute to robotic rehabilitation by eliminating the need for a calibration session, since EEG data for training is recorded during the rehabilitation session, and only a small number of EEG channels are required for model training.
Collapse
Affiliation(s)
- Niklas Kueper
- Robotics Innovation Center, German Research Center for Artificial Intelligence (DFKI), 28359, Bremen, Germany
| | - Su Kyoung Kim
- Robotics Innovation Center, German Research Center for Artificial Intelligence (DFKI), 28359, Bremen, Germany
| | - Elsa Andrea Kirchner
- Robotics Innovation Center, German Research Center for Artificial Intelligence (DFKI), 28359, Bremen, Germany.
- Institute of Medical Technology Systems, University of Duisburg-Essen, 47057, Duisburg, Germany.
| |
Collapse
|
8
|
Ahuja C, Sethia D. Harnessing Few-Shot Learning for EEG signal classification: a survey of state-of-the-art techniques and future directions. Front Hum Neurosci 2024; 18:1421922. [PMID: 39050382 PMCID: PMC11266297 DOI: 10.3389/fnhum.2024.1421922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/31/2024] [Indexed: 07/27/2024] Open
Abstract
This paper presents a systematic literature review, providing a comprehensive taxonomy of Data Augmentation (DA), Transfer Learning (TL), and Self-Supervised Learning (SSL) techniques within the context of Few-Shot Learning (FSL) for EEG signal classification. EEG signals have shown significant potential in various paradigms, including Motor Imagery, Emotion Recognition, Visual Evoked Potentials, Steady-State Visually Evoked Potentials, Rapid Serial Visual Presentation, Event-Related Potentials, and Mental Workload. However, challenges such as limited labeled data, noise, and inter/intra-subject variability have impeded the effectiveness of traditional machine learning (ML) and deep learning (DL) models. This review methodically explores how FSL approaches, incorporating DA, TL, and SSL, can address these challenges and enhance classification performance in specific EEG paradigms. It also delves into the open research challenges related to these techniques in EEG signal classification. Specifically, the review examines the identification of DA strategies tailored to various EEG paradigms, the creation of TL architectures for efficient knowledge transfer, and the formulation of SSL methods for unsupervised representation learning from EEG data. Addressing these challenges is crucial for enhancing the efficacy and robustness of FSL-based EEG signal classification. By presenting a structured taxonomy of FSL techniques and discussing the associated research challenges, this systematic review offers valuable insights for future investigations in EEG signal classification. The findings aim to guide and inspire researchers, promoting advancements in applying FSL methodologies for improved EEG signal analysis and classification in real-world settings.
Collapse
Affiliation(s)
- Chirag Ahuja
- Department of Computer Science and Engineering, Delhi Technological University, New Delhi, India
| | - Divyashikha Sethia
- Department of Software Engineering, Delhi Technology University, New Delhi, India
| |
Collapse
|
9
|
Mirjalili S, Duarte A. More than the sum of its parts: investigating episodic memory as a multidimensional cognitive process. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590651. [PMID: 38712266 PMCID: PMC11071378 DOI: 10.1101/2024.04.22.590651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Why do we remember some events but forget others? Previous studies attempting to decode successful vs. unsuccessful brain states to investigate this question have met with limited success, potentially due, in part, to assessing episodic memory as a unidimensional process, despite evidence that multiple domains contribute to episodic encoding. Using a novel machine learning algorithm known as "transfer learning", we leveraged visual perception, sustained attention, and selective attention brain states to better predict episodic memory performance from trial-to-trial encoding electroencephalography (EEG) activity. We found that this multidimensional treatment of memory decoding improved prediction performance compared to traditional, unidimensional, methods, with each cognitive domain explaining unique variance in decoding of successful encoding-related neural activity. Importantly, this approach could be applied to cognitive domains outside of memory. Overall, this study provides critical insight into the underlying reasons why some events are remembered while others are not.
Collapse
|
10
|
Liu R, Chen Y, Li A, Ding Y, Yu H, Guan C. Aggregating intrinsic information to enhance BCI performance through federated learning. Neural Netw 2024; 172:106100. [PMID: 38232427 DOI: 10.1016/j.neunet.2024.106100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/20/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024]
Abstract
Insufficient data is a long-standing challenge for Brain-Computer Interface (BCI) to build a high-performance deep learning model. Though numerous research groups and institutes collect a multitude of EEG datasets for the same BCI task, sharing EEG data from multiple sites is still challenging due to the heterogeneity of devices. The significance of this challenge cannot be overstated, given the critical role of data diversity in fostering model robustness. However, existing works rarely discuss this issue, predominantly centering their attention on model training within a single dataset, often in the context of inter-subject or inter-session settings. In this work, we propose a hierarchical personalized Federated Learning EEG decoding (FLEEG) framework to surmount this challenge. This innovative framework heralds a new learning paradigm for BCI, enabling datasets with disparate data formats to collaborate in the model training process. Each client is assigned a specific dataset and trains a hierarchical personalized model to manage diverse data formats and facilitate information exchange. Meanwhile, the server coordinates the training procedure to harness knowledge gleaned from all datasets, thus elevating overall performance. The framework has been evaluated in Motor Imagery (MI) classification with nine EEG datasets collected by different devices but implementing the same MI task. Results demonstrate that the proposed framework can boost classification performance up to 8.4% by enabling knowledge sharing between multiple datasets, especially for smaller datasets. Visualization results also indicate that the proposed framework can empower the local models to put a stable focus on task-related areas, yielding better performance. To the best of our knowledge, this is the first end-to-end solution to address this important challenge.
Collapse
Affiliation(s)
- Rui Liu
- School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore.
| | - Yuanyuan Chen
- School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore.
| | - Anran Li
- School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore.
| | - Yi Ding
- School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore.
| | - Han Yu
- School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore.
| | - Cuntai Guan
- School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore.
| |
Collapse
|
11
|
Rakhmatulin I, Dao MS, Nassibi A, Mandic D. Exploring Convolutional Neural Network Architectures for EEG Feature Extraction. SENSORS (BASEL, SWITZERLAND) 2024; 24:877. [PMID: 38339594 PMCID: PMC10856895 DOI: 10.3390/s24030877] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/12/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024]
Abstract
The main purpose of this paper is to provide information on how to create a convolutional neural network (CNN) for extracting features from EEG signals. Our task was to understand the primary aspects of creating and fine-tuning CNNs for various application scenarios. We considered the characteristics of EEG signals, coupled with an exploration of various signal processing and data preparation techniques. These techniques include noise reduction, filtering, encoding, decoding, and dimension reduction, among others. In addition, we conduct an in-depth analysis of well-known CNN architectures, categorizing them into four distinct groups: standard implementation, recurrent convolutional, decoder architecture, and combined architecture. This paper further offers a comprehensive evaluation of these architectures, covering accuracy metrics, hyperparameters, and an appendix that contains a table outlining the parameters of commonly used CNN architectures for feature extraction from EEG signals.
Collapse
Affiliation(s)
- Ildar Rakhmatulin
- Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK; (A.N.)
| | - Minh-Son Dao
- National Institute of Information and Communications Technology (NICT), Tokyo 184-0015, Japan
| | - Amir Nassibi
- Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK; (A.N.)
| | - Danilo Mandic
- Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK; (A.N.)
| |
Collapse
|
12
|
Ravipati Y, Pouratian N, Arnold C, Speier W. Evaluating Deep Learning Performance for P300 Neural Signal Classification. AMIA ... ANNUAL SYMPOSIUM PROCEEDINGS. AMIA SYMPOSIUM 2024; 2023:1218-1225. [PMID: 38222383 PMCID: PMC10785884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
P300 event-related potential (ERP) signals are useful neurological biomarkers, and their accurate classification is important when studying the cognitive functions in patients with neurological disorders. While many studies have proposed models for classifying these signals, results have been inconsistent. As a result, a consensus has not yet been reached on the optimal model for this classification. In this study, we evaluated the performance of classic machine learning and novel deep learning methods for P300 signal classification in both within and across subject training scenarios across a dataset of 75 subjects. Although the deep learning models attained high attended event classification F1 scores, they did not outperform Stepwise Linear Discriminant Analysis (SWLDA) in the within-subject paradigm. In the across-subject paradigm, however, EEG-Inception was able to significantly outperform SWLDA. These results suggest that deep learning models may provide a general model that do not require subject-specific training and calibration in clinical settings.
Collapse
Affiliation(s)
- Yashwanth Ravipati
- UCLA Computational Diagnostics, University of California Los Angeles, Los Angeles, CA, USA
| | - Nader Pouratian
- Neurosurgery, University of Texas, Southwestern, Dallas, TX, USA
| | - Corey Arnold
- UCLA Computational Diagnostics, University of California Los Angeles, Los Angeles, CA, USA
| | - William Speier
- UCLA Computational Diagnostics, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
13
|
Yeom HG, Kim JS, Chung CK. A magnetoencephalography dataset during three-dimensional reaching movements for brain-computer interfaces. Sci Data 2023; 10:552. [PMID: 37607973 PMCID: PMC10444808 DOI: 10.1038/s41597-023-02454-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/08/2023] [Indexed: 08/24/2023] Open
Abstract
Studying the motor-control mechanisms of the brain is critical in academia and also has practical implications because techniques such as brain-computer interfaces (BCIs) can be developed based on brain mechanisms. Magnetoencephalography (MEG) signals have the highest spatial resolution (~3 mm) and temporal resolution (~1 ms) among the non-invasive methods. Therefore, the MEG is an excellent modality for investigating brain mechanisms. However, publicly available MEG data remains scarce due to expensive MEG equipment, requiring a magnetically shielded room, and high maintenance costs for the helium gas supply. In this study, we share the 306-channel MEG and 3-axis accelerometer signals acquired during three-dimensional reaching movements. Additionally, we provide analysis results and MATLAB codes for time-frequency analysis, F-value time-frequency analysis, and topography analysis. These shared MEG datasets offer valuable resources for investigating brain activities or evaluating the accuracy of prediction algorithms. To the best of our knowledge, this data is the only publicly available MEG data measured during reaching movements.
Collapse
Affiliation(s)
- Hong Gi Yeom
- Department of Electronics Engineering, Chosun University, 309 Pilmundae-ro, Dong-gu, Gwangju, 61452, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chosun University, Gwangju, 61452, Republic of Korea
| | - June Sic Kim
- Clinical Research Institute, Konkuk University Medical Center, 120-1 Neungdong-ro, Gwangjin-gu, Seoul, 05030, Republic of Korea.
| | - Chun Kee Chung
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Neurosurgery, Seoul National University College of Medicine and Hospital, Seoul, 03080, Republic of Korea
- Neuroscience Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| |
Collapse
|
14
|
Yap HY, Choo YH, Mohd Yusoh ZI, Khoh WH. An evaluation of transfer learning models in EEG-based authentication. Brain Inform 2023; 10:19. [PMID: 37535168 PMCID: PMC10400490 DOI: 10.1186/s40708-023-00198-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 07/01/2023] [Indexed: 08/04/2023] Open
Abstract
Electroencephalogram(EEG)-based authentication has received increasing attention from researchers as they believe it could serve as an alternative to more conventional personal authentication methods. Unfortunately, EEG signals are non-stationary and could be easily contaminated by noise and artifacts. Therefore, further processing of data analysis is needed to retrieve useful information. Various machine learning approaches have been proposed and implemented in the EEG-based domain, with deep learning being the most current trend. However, retaining the performance of a deep learning model requires substantial computational effort and a vast amount of data, especially when the models go deeper to generate consistent results. Deep learning models trained with small data sets from scratch may experience an overfitting issue. Transfer learning becomes an alternative solution. It is a technique to recognize and apply the knowledge and skills learned from the previous tasks to a new domain with limited training data. This study attempts to explore the applicability of transferring various pre-trained models' knowledge to the EEG-based authentication domain. A self-collected database that consists of 30 subjects was utilized in the analysis. The database enrolment is divided into two sessions, with each session producing two sets of EEG recording data. The frequency spectrums of the preprocessed EEG signals are extracted and fed into the pre-trained models as the input data. Three experimental tests are carried out and the best performance is reported with accuracy in the range of 99.1-99.9%. The acquired results demonstrate the efficiency of transfer learning in authenticating an individual in this domain.
Collapse
Affiliation(s)
- Hui Yen Yap
- Faculty of Information Science and Technology, Multimedia University (MMU), Melaka, Malaysia.
- Faculty of Information and Communication Technology, Universiti Teknikal Malaysia Melaka (UTeM), Melaka, Malaysia.
| | - Yun-Huoy Choo
- Faculty of Information and Communication Technology, Universiti Teknikal Malaysia Melaka (UTeM), Melaka, Malaysia
| | - Zeratul Izzah Mohd Yusoh
- Faculty of Information and Communication Technology, Universiti Teknikal Malaysia Melaka (UTeM), Melaka, Malaysia
| | - Wee How Khoh
- Faculty of Information Science and Technology, Multimedia University (MMU), Melaka, Malaysia
| |
Collapse
|
15
|
Sun C, Mou C. Survey on the research direction of EEG-based signal processing. Front Neurosci 2023; 17:1203059. [PMID: 37521708 PMCID: PMC10372445 DOI: 10.3389/fnins.2023.1203059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/16/2023] [Indexed: 08/01/2023] Open
Abstract
Electroencephalography (EEG) is increasingly important in Brain-Computer Interface (BCI) systems due to its portability and simplicity. In this paper, we provide a comprehensive review of research on EEG signal processing techniques since 2021, with a focus on preprocessing, feature extraction, and classification methods. We analyzed 61 research articles retrieved from academic search engines, including CNKI, PubMed, Nature, IEEE Xplore, and Science Direct. For preprocessing, we focus on innovatively proposed preprocessing methods, channel selection, and data augmentation. Data augmentation is classified into conventional methods (sliding windows, segmentation and recombination, and noise injection) and deep learning methods [Generative Adversarial Networks (GAN) and Variation AutoEncoder (VAE)]. We also pay attention to the application of deep learning, and multi-method fusion approaches, including both conventional algorithm fusion and fusion between conventional algorithms and deep learning. Our analysis identifies 35 (57.4%), 18 (29.5%), and 37 (60.7%) studies in the directions of preprocessing, feature extraction, and classification, respectively. We find that preprocessing methods have become widely used in EEG classification (96.7% of reviewed papers) and comparative experiments have been conducted in some studies to validate preprocessing. We also discussed the adoption of channel selection and data augmentation and concluded several mentionable matters about data augmentation. Furthermore, deep learning methods have shown great promise in EEG classification, with Convolutional Neural Networks (CNNs) being the main structure of deep neural networks (92.3% of deep learning papers). We summarize and analyze several innovative neural networks, including CNNs and multi-structure fusion. However, we also identified several problems and limitations of current deep learning techniques in EEG classification, including inappropriate input, low cross-subject accuracy, unbalanced between parameters and time costs, and a lack of interpretability. Finally, we highlight the emerging trend of multi-method fusion approaches (49.2% of reviewed papers) and analyze the data and some examples. We also provide insights into some challenges of multi-method fusion. Our review lays a foundation for future studies to improve EEG classification performance.
Collapse
|
16
|
Yadav H, Maini S. Electroencephalogram based brain-computer interface: Applications, challenges, and opportunities. MULTIMEDIA TOOLS AND APPLICATIONS 2023:1-45. [PMID: 37362726 PMCID: PMC10157593 DOI: 10.1007/s11042-023-15653-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 07/17/2022] [Accepted: 04/22/2023] [Indexed: 06/28/2023]
Abstract
Brain-Computer Interfaces (BCI) is an exciting and emerging research area for researchers and scientists. It is a suitable combination of software and hardware to operate any device mentally. This review emphasizes the significant stages in the BCI domain, current problems, and state-of-the-art findings. This article also covers how current results can contribute to new knowledge about BCI, an overview of BCI from its early developments to recent advancements, BCI applications, challenges, and future directions. The authors pointed to unresolved issues and expressed how BCI is valuable for analyzing the human brain. Humans' dependence on machines has led humankind into a new future where BCI can play an essential role in improving this modern world.
Collapse
Affiliation(s)
- Hitesh Yadav
- Department of Electrical and Instrumentation Engineering, Sant Longowal Institute of Engineering & Technology, Longowal, Punjab India
| | - Surita Maini
- Department of Electrical and Instrumentation Engineering, Sant Longowal Institute of Engineering & Technology, Longowal, Punjab India
| |
Collapse
|
17
|
Srisrisawang N, Müller-Putz GR. Transfer Learning in Trajectory Decoding: Sensor or Source Space? SENSORS (BASEL, SWITZERLAND) 2023; 23:3593. [PMID: 37050653 PMCID: PMC10098869 DOI: 10.3390/s23073593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/08/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
In this study, across-participant and across-session transfer learning was investigated to minimize the calibration time of the brain-computer interface (BCI) system in the context of continuous hand trajectory decoding. We reanalyzed data from a study with 10 able-bodied participants across three sessions. A leave-one-participant-out (LOPO) model was utilized as a starting model. Recursive exponentially weighted partial least squares regression (REW-PLS) was employed to overcome the memory limitation due to the large pool of training data. We considered four scenarios: generalized with no update (Gen), generalized with cumulative update (GenC), and individual models with cumulative (IndC) and non-cumulative (Ind) updates, with each one trained with sensor-space features or source-space features. The decoding performance in generalized models (Gen and GenC) was lower than the chance level. In individual models, the cumulative update (IndC) showed no significant improvement over the non-cumulative model (Ind). The performance showed the decoder's incapability to generalize across participants and sessions in this task. The results suggested that the best correlation could be achieved with the sensor-space individual model, despite additional anatomical information in the source-space features. The decoding pattern showed a more localized pattern around the precuneus over three sessions in Ind models.
Collapse
Affiliation(s)
- Nitikorn Srisrisawang
- Institute of Neural Engineering, Graz University of Technology, Stremayrgasse 16/IV, 8010 Graz, Austria
| | - Gernot R. Müller-Putz
- Institute of Neural Engineering, Graz University of Technology, Stremayrgasse 16/IV, 8010 Graz, Austria
- BioTechMed Graz, 8010 Graz, Austria
| |
Collapse
|
18
|
Quiles V, Ferrero L, Iáñez E, Ortiz M, Gil-Agudo Á, Azorín JM. Brain-machine interface based on transfer-learning for detecting the appearance of obstacles during exoskeleton-assisted walking. Front Neurosci 2023; 17:1154480. [PMID: 36998726 PMCID: PMC10043233 DOI: 10.3389/fnins.2023.1154480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/24/2023] [Indexed: 03/16/2023] Open
Abstract
IntroductionBrain-machine interfaces (BMIs) attempt to establish communication between the user and the device to be controlled. BMIs have great challenges to face in order to design a robust control in the real field of application. The artifacts, high volume of training data, and non-stationarity of the signal of EEG-based interfaces are challenges that classical processing techniques do not solve, showing certain shortcomings in the real-time domain. Recent advances in deep-learning techniques open a window of opportunity to solve some of these problems. In this work, an interface able to detect the evoked potential that occurs when a person intends to stop due to the appearance of an unexpected obstacle has been developed.Material and methodsFirst, the interface was tested on a treadmill with five subjects, in which the user stopped when an obstacle appeared (simulated by a laser). The analysis is based on two consecutive convolutional networks: the first one to discern the intention to stop against normal walking and the second one to correct false detections of the previous one.Results and discussionThe results were superior when using the methodology of the two consecutive networks vs. only the first one in a cross-validation pseudo-online analysis. The false positives per min (FP/min) decreased from 31.8 to 3.9 FP/min and the number of repetitions in which there were no false positives and true positives (TP) improved from 34.9% to 60.3% NOFP/TP. This methodology was tested in a closed-loop experiment with an exoskeleton, in which the brain-machine interface (BMI) detected an obstacle and sent the command to the exoskeleton to stop. This methodology was tested with three healthy subjects, and the online results were 3.8 FP/min and 49.3% NOFP/TP. To make this model feasible for non-able bodied patients with a reduced and manageable time frame, transfer-learning techniques were applied and validated in the previous tests, and were then applied to patients. The results for two incomplete Spinal Cord Injury (iSCI) patients were 37.9% NOFP/TP and 7.7 FP/min.
Collapse
Affiliation(s)
- Vicente Quiles
- Brain-Machine Interface Systems Lab, Universidad Miguel Hernández de Elche, Elche, Spain
- Instituto de Investigación en Ingeniería de Elche - I3E, Universidad Miguel Hernández de Elche, Elche, Spain
| | - Laura Ferrero
- Brain-Machine Interface Systems Lab, Universidad Miguel Hernández de Elche, Elche, Spain
- Instituto de Investigación en Ingeniería de Elche - I3E, Universidad Miguel Hernández de Elche, Elche, Spain
- The European University of Brain and Technology (NeurotechEU), European Union
| | - Eduardo Iáñez
- Brain-Machine Interface Systems Lab, Universidad Miguel Hernández de Elche, Elche, Spain
- Instituto de Investigación en Ingeniería de Elche - I3E, Universidad Miguel Hernández de Elche, Elche, Spain
- *Correspondence: Eduardo Iáñez
| | - Mario Ortiz
- Brain-Machine Interface Systems Lab, Universidad Miguel Hernández de Elche, Elche, Spain
- Instituto de Investigación en Ingeniería de Elche - I3E, Universidad Miguel Hernández de Elche, Elche, Spain
- The European University of Brain and Technology (NeurotechEU), European Union
| | - Ángel Gil-Agudo
- Biomechanics Unit of the National Paraplegic Hospital, Toledo, Spain
| | - José M. Azorín
- Brain-Machine Interface Systems Lab, Universidad Miguel Hernández de Elche, Elche, Spain
- Instituto de Investigación en Ingeniería de Elche - I3E, Universidad Miguel Hernández de Elche, Elche, Spain
- The European University of Brain and Technology (NeurotechEU), European Union
- ValGRAI: Valencian Graduated School and Research Network of Artificial Intelligence, Valencia, Spain
| |
Collapse
|
19
|
Alharbi H. Identifying Thematics in a Brain-Computer Interface Research. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2023; 2023:2793211. [PMID: 36643889 PMCID: PMC9833923 DOI: 10.1155/2023/2793211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/21/2022] [Accepted: 12/24/2022] [Indexed: 01/05/2023]
Abstract
This umbrella review is motivated to understand the shift in research themes on brain-computer interfacing (BCI) and it determined that a shift away from themes that focus on medical advancement and system development to applications that included education, marketing, gaming, safety, and security has occurred. The background of this review examined aspects of BCI categorisation, neuroimaging methods, brain control signal classification, applications, and ethics. The specific area of BCI software and hardware development was not examined. A search using One Search was undertaken and 92 BCI reviews were selected for inclusion. Publication demographics indicate the average number of authors on review papers considered was 4.2 ± 1.8. The results also indicate a rapid increase in the number of BCI reviews from 2003, with only three reviews before that period, two in 1972, and one in 1996. While BCI authors were predominantly Euro-American in early reviews, this shifted to a more global authorship, which China dominated by 2020-2022. The review revealed six disciplines associated with BCI systems: life sciences and biomedicine (n = 42), neurosciences and neurology (n = 35), and rehabilitation (n = 20); (2) the second domain centred on the theme of functionality: computer science (n = 20), engineering (n = 28) and technology (n = 38). There was a thematic shift from understanding brain function and modes of interfacing BCI systems to more applied research novel areas of research-identified surround artificial intelligence, including machine learning, pre-processing, and deep learning. As BCI systems become more invasive in the lives of "normal" individuals, it is expected that there will be a refocus and thematic shift towards increased research into ethical issues and the need for legal oversight in BCI application.
Collapse
Affiliation(s)
- Hadeel Alharbi
- Department of Information and Computer Science, College of Computer Science and Engineering, University of Ha'il, Ha'il 81481, Saudi Arabia
| |
Collapse
|
20
|
Tran Y. EEG Signal Processing for Biomedical Applications. SENSORS (BASEL, SWITZERLAND) 2022; 22:9754. [PMID: 36560123 PMCID: PMC9787770 DOI: 10.3390/s22249754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Electroencephalography (EEG) signals are used widely in clinical and research settings [...].
Collapse
Affiliation(s)
- Yvonne Tran
- Department of Linguistics, Macquarie University Hearing, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
21
|
A Review of Brain Activity and EEG-Based Brain-Computer Interfaces for Rehabilitation Application. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120768. [PMID: 36550974 PMCID: PMC9774292 DOI: 10.3390/bioengineering9120768] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Patients with severe CNS injuries struggle primarily with their sensorimotor function and communication with the outside world. There is an urgent need for advanced neural rehabilitation and intelligent interaction technology to provide help for patients with nerve injuries. Recent studies have established the brain-computer interface (BCI) in order to provide patients with appropriate interaction methods or more intelligent rehabilitation training. This paper reviews the most recent research on brain-computer-interface-based non-invasive rehabilitation systems. Various endogenous and exogenous methods, advantages, limitations, and challenges are discussed and proposed. In addition, the paper discusses the communication between the various brain-computer interface modes used between severely paralyzed and locked patients and the surrounding environment, particularly the brain-computer interaction system utilizing exogenous (induced) EEG signals (such as P300 and SSVEP). This discussion reveals with an examination of the interface for collecting EEG signals, EEG components, and signal postprocessing. Furthermore, the paper describes the development of natural interaction strategies, with a focus on signal acquisition, data processing, pattern recognition algorithms, and control techniques.
Collapse
|
22
|
Li S, Wu H, Ding L, Wu D. Meta-Learning for Fast and Privacy-Preserving Source Knowledge Transfer of EEG-Based BCIs. IEEE COMPUT INTELL M 2022. [DOI: 10.1109/mci.2022.3199622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Siyang Li
- Huazhong University of Science and Technology, China
| | - Huanyu Wu
- Huazhong University of Science and Technology, China
| | - Lieyun Ding
- Huazhong University of Science and Technology, China
| | - Dongrui Wu
- Huazhong University of Science and Technology, China
| |
Collapse
|
23
|
Junaid SB, Imam AA, Balogun AO, De Silva LC, Surakat YA, Kumar G, Abdulkarim M, Shuaibu AN, Garba A, Sahalu Y, Mohammed A, Mohammed TY, Abdulkadir BA, Abba AA, Kakumi NAI, Mahamad S. Recent Advancements in Emerging Technologies for Healthcare Management Systems: A Survey. Healthcare (Basel) 2022; 10:1940. [PMID: 36292387 PMCID: PMC9601636 DOI: 10.3390/healthcare10101940] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
In recent times, the growth of the Internet of Things (IoT), artificial intelligence (AI), and Blockchain technologies have quickly gained pace as a new study niche in numerous collegiate and industrial sectors, notably in the healthcare sector. Recent advancements in healthcare delivery have given many patients access to advanced personalized healthcare, which has improved their well-being. The subsequent phase in healthcare is to seamlessly consolidate these emerging technologies such as IoT-assisted wearable sensor devices, AI, and Blockchain collectively. Surprisingly, owing to the rapid use of smart wearable sensors, IoT and AI-enabled technology are shifting healthcare from a conventional hub-based system to a more personalized healthcare management system (HMS). However, implementing smart sensors, advanced IoT, AI, and Blockchain technologies synchronously in HMS remains a significant challenge. Prominent and reoccurring issues such as scarcity of cost-effective and accurate smart medical sensors, unstandardized IoT system architectures, heterogeneity of connected wearable devices, the multidimensionality of data generated, and high demand for interoperability are vivid problems affecting the advancement of HMS. Hence, this survey paper presents a detailed evaluation of the application of these emerging technologies (Smart Sensor, IoT, AI, Blockchain) in HMS to better understand the progress thus far. Specifically, current studies and findings on the deployment of these emerging technologies in healthcare are investigated, as well as key enabling factors, noteworthy use cases, and successful deployments. This survey also examined essential issues that are frequently encountered by IoT-assisted wearable sensor systems, AI, and Blockchain, as well as the critical concerns that must be addressed to enhance the application of these emerging technologies in the HMS.
Collapse
Affiliation(s)
| | - Abdullahi Abubakar Imam
- School of Digital Science, Universiti Brunei Darussalam, Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei
| | - Abdullateef Oluwagbemiga Balogun
- Department of Computer Science, University of Ilorin, Ilorin 1515, Nigeria
- Department of Computer and Information Science, Universiti Teknologi PETRONAS, Sri Iskandar 32610, Malaysia
| | | | | | - Ganesh Kumar
- Department of Computer and Information Science, Universiti Teknologi PETRONAS, Sri Iskandar 32610, Malaysia
| | - Muhammad Abdulkarim
- Department of Computer Science, Ahmadu Bello University, Zaria 810211, Nigeria
| | - Aliyu Nuhu Shuaibu
- Department of Electrical Engineering, University of Jos, Bauchi Road, Jos 930105, Nigeria
| | - Aliyu Garba
- Department of Computer Science, Ahmadu Bello University, Zaria 810211, Nigeria
| | - Yusra Sahalu
- SEHA Abu Dhabi Health Services Co., Abu Dhabi 109090, United Arab Emirates
| | - Abdullahi Mohammed
- Department of Computer Science, Ahmadu Bello University, Zaria 810211, Nigeria
| | | | | | | | - Nana Aliyu Iliyasu Kakumi
- Patient Care Department, General Ward, Saudi German Hospital Cairo, Taha Hussein Rd, Huckstep, El Nozha, Cairo Governorate 4473303, Egypt
| | - Saipunidzam Mahamad
- Department of Computer and Information Science, Universiti Teknologi PETRONAS, Sri Iskandar 32610, Malaysia
| |
Collapse
|
24
|
Li R, Liu D, Li Z, Liu J, Zhou J, Liu W, Liu B, Fu W, Alhassan AB. A novel EEG decoding method for a facial-expression-based BCI system using the combined convolutional neural network and genetic algorithm. Front Neurosci 2022; 16:988535. [PMID: 36177358 PMCID: PMC9513431 DOI: 10.3389/fnins.2022.988535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/17/2022] [Indexed: 11/19/2022] Open
Abstract
Multiple types of brain-control systems have been applied in the field of rehabilitation. As an alternative scheme for balancing user fatigue and the classification accuracy of brain–computer interface (BCI) systems, facial-expression-based brain control technologies have been proposed in the form of novel BCI systems. Unfortunately, existing machine learning algorithms fail to identify the most relevant features of electroencephalogram signals, which further limits the performance of the classifiers. To address this problem, an improved classification method is proposed for facial-expression-based BCI (FE-BCI) systems, using a convolutional neural network (CNN) combined with a genetic algorithm (GA). The CNN was applied to extract features and classify them. The GA was used for hyperparameter selection to extract the most relevant parameters for classification. To validate the superiority of the proposed algorithm used in this study, various experimental performance results were systematically evaluated, and a trained CNN-GA model was constructed to control an intelligent car in real time. The average accuracy across all subjects was 89.21 ± 3.79%, and the highest accuracy was 97.71 ± 2.07%. The superior performance of the proposed algorithm was demonstrated through offline and online experiments. The experimental results demonstrate that our improved FE-BCI system outperforms the traditional methods.
Collapse
Affiliation(s)
- Rui Li
- School of Mechanical and Instrumental Engineering, Xi'an University of Technology, Xi'an, China
- Xi'an People's Hospital, Xi'an, China
- *Correspondence: Rui Li
| | - Di Liu
- School of Mechanical and Instrumental Engineering, Xi'an University of Technology, Xi'an, China
| | - Zhijun Li
- School of Mechanical and Instrumental Engineering, Xi'an University of Technology, Xi'an, China
| | - Jinli Liu
- School of Mechanical and Instrumental Engineering, Xi'an University of Technology, Xi'an, China
| | - Jincao Zhou
- School of Mechanical and Instrumental Engineering, Xi'an University of Technology, Xi'an, China
| | - Weiping Liu
- Xi'an People's Hospital, Xi'an, China
- Weiping Liu
| | - Bo Liu
- School of Mechanical and Instrumental Engineering, Xi'an University of Technology, Xi'an, China
| | - Weiping Fu
- School of Mechanical and Instrumental Engineering, Xi'an University of Technology, Xi'an, China
| | - Ahmad Bala Alhassan
- Department of Electrical and Information Technology, King Mongkut's University of Technology, Bangkok, Thailand
| |
Collapse
|
25
|
Libert A, Van Den Kerchove A, Wittevrongel B, Van Hulle M. Analytic beamformer transformation for transfer learning in motion-onset visual evoked potential decoding. J Neural Eng 2022; 19. [PMID: 35366653 DOI: 10.1088/1741-2552/ac636a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/01/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE While decoders of EEG-based event-related potentials (ERPs) are routinely tailored to the individual user to maximize performance, developing them on populations for individual usage has proven much more challenging. We propose the analytic beamformer transformation (ABT) to extract phase and/or magnitude information from spatiotemporal ERPs in response to motion-onset stimulation. APPROACH We have tested ABT on 52 motion-onset visual evoked potential (mVEP) datasets from 26 healthy subjects and compared the classification accuracy of support vector machine (SVM), spatiotemporal beamformer (stBF) and stepwise linear discriminant analysis (SWLDA) when trained on individual subjects and on a population thereof. MAIN RESULTS When using phase- and combined phase/magnitude information extracted by ABT, we show significant improvements in accuracy of population-trained classifiers applied to individual users (p<0.001). We also show that 450 epochs are needed for a correct functioning of ABT, which corresponds to 2 minutes of paradigm stimulation. SIGNIFICANCE We have shown that ABT can be used to create population-trained mVEP classifiers using a limited number of epochs. We expect this to pertain to other ERPs or synchronous stimulation paradigms, allowing for a more effective, population-based training of visual BCIs. Finally, as ABT renders recordings across subjects more structurally invariant, it could be used for transfer learning purposes in view of plug-and-play BCI applications.
Collapse
Affiliation(s)
- Arno Libert
- Neuroscience, computational neuroscience research group, KU Leuven Biomedical Sciences Group, Herestraat 49 Bus 1021, Leuven, 3000, BELGIUM
| | - Arne Van Den Kerchove
- Neuroscience, computational Neuroscience research group, KU Leuven Biomedical Sciences Group, Herestraat 49 Bus 1021, Leuven, 3000, BELGIUM
| | - Benjamin Wittevrongel
- Neuroscience, computational neuroscience research group, KU Leuven Biomedical Sciences Group, Herestraat 49 Bus 1021, Leuven, 3000, BELGIUM
| | - Marc Van Hulle
- Neuroscience, KU Leuven Biomedical Sciences Group, Herestraat 49 Bus 1021, Leuven, 3000, BELGIUM
| |
Collapse
|
26
|
Korda A, Ventouras E, Asvestas P, Toumaian M, Matsopoulos G, Smyrnis N. Convolutional neural network propagation on electroencephalographic scalograms for detection of schizophrenia. Clin Neurophysiol 2022; 139:90-105. [DOI: 10.1016/j.clinph.2022.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/11/2022] [Accepted: 04/01/2022] [Indexed: 11/28/2022]
|
27
|
A Two-Branch CNN Fusing Temporal and Frequency Features for Motor Imagery EEG Decoding. ENTROPY 2022; 24:e24030376. [PMID: 35327887 PMCID: PMC8947711 DOI: 10.3390/e24030376] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/25/2022] [Accepted: 03/03/2022] [Indexed: 12/22/2022]
Abstract
With the development of technology and the rise of the meta-universe concept, the brain-computer interface (BCI) has become a hotspot in the research field, and the BCI based on motor imagery (MI) EEG has been widely concerned. However, in the process of MI-EEG decoding, the performance of the decoding model needs to be improved. At present, most MI-EEG decoding methods based on deep learning cannot make full use of the temporal and frequency features of EEG data, which leads to a low accuracy of MI-EEG decoding. To address this issue, this paper proposes a two-branch convolutional neural network (TBTF-CNN) that can simultaneously learn the temporal and frequency features of EEG data. The structure of EEG data is reconstructed to simplify the spatio-temporal convolution process of CNN, and continuous wavelet transform is used to express the time-frequency features of EEG data. TBTF-CNN fuses the features learned from the two branches and then inputs them into the classifier to decode the MI-EEG. The experimental results on the BCI competition IV 2b dataset show that the proposed model achieves an average classification accuracy of 81.3% and a kappa value of 0.63. Compared with other methods, TBTF-CNN achieves a better performance in MI-EEG decoding. The proposed method can make full use of the temporal and frequency features of EEG data and can improve the decoding accuracy of MI-EEG.
Collapse
|
28
|
Ebbehoj A, Thunbo MØ, Andersen OE, Glindtvad MV, Hulman A. Transfer learning for non-image data in clinical research: A scoping review. PLOS DIGITAL HEALTH 2022; 1:e0000014. [PMID: 36812540 PMCID: PMC9931256 DOI: 10.1371/journal.pdig.0000014] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/15/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND Transfer learning is a form of machine learning where a pre-trained model trained on a specific task is reused as a starting point and tailored to another task in a different dataset. While transfer learning has garnered considerable attention in medical image analysis, its use for clinical non-image data is not well studied. Therefore, the objective of this scoping review was to explore the use of transfer learning for non-image data in the clinical literature. METHODS AND FINDINGS We systematically searched medical databases (PubMed, EMBASE, CINAHL) for peer-reviewed clinical studies that used transfer learning on human non-image data. We included 83 studies in the review. More than half of the studies (63%) were published within 12 months of the search. Transfer learning was most often applied to time series data (61%), followed by tabular data (18%), audio (12%) and text (8%). Thirty-three (40%) studies applied an image-based model to non-image data after transforming data into images (e.g. spectrograms). Twenty-nine (35%) studies did not have any authors with a health-related affiliation. Many studies used publicly available datasets (66%) and models (49%), but fewer shared their code (27%). CONCLUSIONS In this scoping review, we have described current trends in the use of transfer learning for non-image data in the clinical literature. We found that the use of transfer learning has grown rapidly within the last few years. We have identified studies and demonstrated the potential of transfer learning in clinical research in a wide range of medical specialties. More interdisciplinary collaborations and the wider adaption of reproducible research principles are needed to increase the impact of transfer learning in clinical research.
Collapse
Affiliation(s)
- Andreas Ebbehoj
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Denmark
- Department of Clinical Medicine, Aarhus University, Denmark
| | | | | | | | - Adam Hulman
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Denmark
| |
Collapse
|
29
|
Huang X, Xu Y, Hua J, Yi W, Yin H, Hu R, Wang S. A Review on Signal Processing Approaches to Reduce Calibration Time in EEG-Based Brain-Computer Interface. Front Neurosci 2021; 15:733546. [PMID: 34489636 PMCID: PMC8417074 DOI: 10.3389/fnins.2021.733546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/30/2021] [Indexed: 11/26/2022] Open
Abstract
In an electroencephalogram- (EEG-) based brain–computer interface (BCI), a subject can directly communicate with an electronic device using his EEG signals in a safe and convenient way. However, the sensitivity to noise/artifact and the non-stationarity of EEG signals result in high inter-subject/session variability. Therefore, each subject usually spends long and tedious calibration time in building a subject-specific classifier. To solve this problem, we review existing signal processing approaches, including transfer learning (TL), semi-supervised learning (SSL), and a combination of TL and SSL. Cross-subject TL can transfer amounts of labeled samples from different source subjects for the target subject. Moreover, Cross-session/task/device TL can reduce the calibration time of the subject for the target session, task, or device by importing the labeled samples from the source sessions, tasks, or devices. SSL simultaneously utilizes the labeled and unlabeled samples from the target subject. The combination of TL and SSL can take advantage of each other. For each kind of signal processing approaches, we introduce their concepts and representative methods. The experimental results show that TL, SSL, and their combination can obtain good classification performance by effectively utilizing the samples available. In the end, we draw a conclusion and point to research directions in the future.
Collapse
Affiliation(s)
- Xin Huang
- Software College, Jiangxi Normal University, Nanchang, China
| | - Yilu Xu
- School of Software, Jiangxi Agricultural University, Nanchang, China
| | - Jing Hua
- School of Software, Jiangxi Agricultural University, Nanchang, China
| | - Wenlong Yi
- School of Software, Jiangxi Agricultural University, Nanchang, China
| | - Hua Yin
- School of Software, Jiangxi Agricultural University, Nanchang, China
| | - Ronghua Hu
- School of Mechatronics Engineering, Nanchang University, Nanchang, China
| | - Shiyi Wang
- Youth League Committee, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|
30
|
Deep and Wide Transfer Learning with Kernel Matching for Pooling Data from Electroencephalography and Psychological Questionnaires. SENSORS 2021; 21:s21155105. [PMID: 34372338 PMCID: PMC8347227 DOI: 10.3390/s21155105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/03/2021] [Accepted: 07/09/2021] [Indexed: 12/22/2022]
Abstract
Motor imagery (MI) promotes motor learning and encourages brain–computer interface systems that entail electroencephalogram (EEG) decoding. However, a long period of training is required to master brain rhythms’ self-regulation, resulting in users with MI inefficiency. We introduce a parameter-based approach of cross-subject transfer-learning to improve the performances of poor-performing individuals in MI-based BCI systems, pooling data from labeled EEG measurements and psychological questionnaires via kernel-embedding. To this end, a Deep and Wide neural network for MI classification is implemented to pre-train the network from the source domain. Then, the parameter layers are transferred to initialize the target network within a fine-tuning procedure to recompute the Multilayer Perceptron-based accuracy. To perform data-fusion combining categorical features with the real-valued features, we implement stepwise kernel-matching via Gaussian-embedding. Finally, the paired source–target sets are selected for evaluation purposes according to the inefficiency-based clustering by subjects to consider their influence on BCI motor skills, exploring two choosing strategies of the best-performing subjects (source space): single-subject and multiple-subjects. Validation results achieved for discriminant MI tasks demonstrate that the introduced Deep and Wide neural network presents competitive performance of accuracy even after the inclusion of questionnaire data.
Collapse
|
31
|
Dehghani M, Mobaien A, Boostani R. A deep neural network-based transfer learning to enhance the performance and learning speed of BCI systems. BRAIN-COMPUTER INTERFACES 2021. [DOI: 10.1080/2326263x.2021.1943955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Maryam Dehghani
- Department of Computer Science and Engineering, Apadana Institute of Higher Educations, Shiraz, Iran
| | - Ali Mobaien
- Department of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran
| | - Reza Boostani
- Department of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran
| |
Collapse
|
32
|
Gonzalez H, George R, Muzaffar S, Acevedo J, Hoppner S, Mayr C, Yoo J, Fitzek F, Elfadel I. Hardware Acceleration of EEG-Based Emotion Classification Systems: A Comprehensive Survey. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2021; 15:412-442. [PMID: 34125683 DOI: 10.1109/tbcas.2021.3089132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recent years have witnessed a growing interest in EEG-based wearable classifiers of emotions, which could enable the real-time monitoring of patients suffering from neurological disorders such as Amyotrophic Lateral Sclerosis (ALS), Autism Spectrum Disorder (ASD), or Alzheimer's. The hope is that such wearable emotion classifiers would facilitate the patients' social integration and lead to improved healthcare outcomes for them and their loved ones. Yet in spite of their direct relevance to neuro-medicine, the hardware platforms for emotion classification have yet to fill up some important gaps in their various approaches to emotion classification in a healthcare context. In this paper, we present the first hardware-focused critical review of EEG-based wearable classifiers of emotions and survey their implementation perspectives, their algorithmic foundations, and their feature extraction methodologies. We further provide a neuroscience-based analysis of current hardware accelerators of emotion classifiers and use it to map out several research opportunities, including multi-modal hardware platforms, accelerators with tightly-coupled cores operating robustly in the near/supra-threshold region, and pre-processing libraries for universal EEG-based datasets.
Collapse
|
33
|
Ko W, Jeon E, Jeong S, Phyo J, Suk HI. A Survey on Deep Learning-Based Short/Zero-Calibration Approaches for EEG-Based Brain-Computer Interfaces. Front Hum Neurosci 2021; 15:643386. [PMID: 34140883 PMCID: PMC8204721 DOI: 10.3389/fnhum.2021.643386] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/27/2021] [Indexed: 11/28/2022] Open
Abstract
Brain-computer interfaces (BCIs) utilizing machine learning techniques are an emerging technology that enables a communication pathway between a user and an external system, such as a computer. Owing to its practicality, electroencephalography (EEG) is one of the most widely used measurements for BCI. However, EEG has complex patterns and EEG-based BCIs mostly involve a cost/time-consuming calibration phase; thus, acquiring sufficient EEG data is rarely possible. Recently, deep learning (DL) has had a theoretical/practical impact on BCI research because of its use in learning representations of complex patterns inherent in EEG. Moreover, algorithmic advances in DL facilitate short/zero-calibration in BCI, thereby suppressing the data acquisition phase. Those advancements include data augmentation (DA), increasing the number of training samples without acquiring additional data, and transfer learning (TL), taking advantage of representative knowledge obtained from one dataset to address the so-called data insufficiency problem in other datasets. In this study, we review DL-based short/zero-calibration methods for BCI. Further, we elaborate methodological/algorithmic trends, highlight intriguing approaches in the literature, and discuss directions for further research. In particular, we search for generative model-based and geometric manipulation-based DA methods. Additionally, we categorize TL techniques in DL-based BCIs into explicit and implicit methods. Our systematization reveals advances in the DA and TL methods. Among the studies reviewed herein, ~45% of DA studies used generative model-based techniques, whereas ~45% of TL studies used explicit knowledge transferring strategy. Moreover, based on our literature review, we recommend an appropriate DA strategy for DL-based BCIs and discuss trends of TLs used in DL-based BCIs.
Collapse
Affiliation(s)
- Wonjun Ko
- Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea
| | - Eunjin Jeon
- Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea
| | - Seungwoo Jeong
- Department of Artificial Intelligence, Korea University, Seoul, South Korea
| | - Jaeun Phyo
- Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea
| | - Heung-Il Suk
- Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea
- Department of Artificial Intelligence, Korea University, Seoul, South Korea
| |
Collapse
|
34
|
A Fuzzy Shell for Developing an Interpretable BCI Based on the Spatiotemporal Dynamics of the Evoked Oscillations. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2021; 2021:6685672. [PMID: 33936191 PMCID: PMC8055434 DOI: 10.1155/2021/6685672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/05/2021] [Accepted: 03/17/2021] [Indexed: 12/26/2022]
Abstract
Researchers in neuroscience computing experience difficulties when they try to carry out neuroanalysis in practice or when they need to design an explainable brain-computer interface (BCI) with quick setup and minimal training phase. There is a need of interpretable computational intelligence techniques and new brain states decoding for more understandable interpretation of the sensory, cognitive, and motor brain processing. We propose a general-purpose fuzzy software system shell for developing a custom EEG BCI system. It relies on the bursts of the ongoing EEG frequency power synchronization/desynchronization at scalp level and supports quick BCI setup by linguistic features, ad hoc fuzzy membership construction, explainable IF-THEN rules, and the concept of the Internet of Things (IoT), which makes the BCI system device and service independent. It has a potential for designing both passive and event-related BCIs with options for visual representation at scalp-source level in response to time. The feasibility of the proposed system has been proven by real experiments and bursts for β and γ frequency power have been detected in real time in response to evoked visuospatial selective attention. The presence of the proposed new brain state decoding can be used as a feasible metric for interpretation of the spatiotemporal dynamics of the passive or evoked neural oscillations.
Collapse
|
35
|
Cao L, Chen S, Jia J, Fan C, Wang H, Xu Z. An Inter- and Intra-Subject Transfer Calibration Scheme for Improving Feedback Performance of Sensorimotor Rhythm-Based BCI Rehabilitation. Front Neurosci 2021; 14:629572. [PMID: 33584182 PMCID: PMC7876404 DOI: 10.3389/fnins.2020.629572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 12/21/2020] [Indexed: 01/11/2023] Open
Abstract
The Brain Computer Interface (BCI) system is a typical neurophysiological application which helps paralyzed patients with human-machine communication. Stroke patients with motor disabilities are able to perform BCI tasks for clinical rehabilitation. This paper proposes an effective scheme of transfer calibration for BCI rehabilitation. The inter- and intra-subject transfer learning approaches can improve the low-precision classification performance for experimental feedback. The results imply that the systematical scheme is positive in increasing the confidence of voluntary training for stroke patients. In addition, it also reduces the time consumption of classifier calibration.
Collapse
Affiliation(s)
- Lei Cao
- Department of Artificial Intelligence, Shanghai Maritime University, Shanghai, China
| | - Shugeng Chen
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Jia
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | | | - Haoran Wang
- Department of Computer Science and Technology, Tongji University, Shanghai, China
| | - Zhixiong Xu
- Department of Artificial Intelligence, Shanghai Maritime University, Shanghai, China
| |
Collapse
|