1
|
Matthies L, Amir-Kabirian H, Gebrekidan MT, Braeuer AS, Speth US, Smeets R, Hagel C, Gosau M, Knipfer C, Friedrich RE. Raman difference spectroscopy and U-Net convolutional neural network for molecular analysis of cutaneous neurofibroma. PLoS One 2024; 19:e0302017. [PMID: 38603731 PMCID: PMC11008861 DOI: 10.1371/journal.pone.0302017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
In Neurofibromatosis type 1 (NF1), peripheral nerve sheaths tumors are common, with cutaneous neurofibromas resulting in significant aesthetic, painful and functional problems requiring surgical removal. To date, determination of adequate surgical resection margins-complete tumor removal while attempting to preserve viable tissue-remains largely subjective. Thus, residual tumor extension beyond surgical margins or recurrence of the disease may frequently be observed. Here, we introduce Shifted-Excitation Raman Spectroscopy in combination with deep neural networks for the future perspective of objective, real-time diagnosis, and guided surgical ablation. The obtained results are validated through established histological methods. In this study, we evaluated the discrimination between cutaneous neurofibroma (n = 9) and adjacent physiological tissues (n = 25) in 34 surgical pathological specimens ex vivo at a total of 82 distinct measurement loci. Based on a convolutional neural network (U-Net), the mean raw Raman spectra (n = 8,200) were processed and refined, and afterwards the spectral peaks were assigned to their respective molecular origin. Principal component and linear discriminant analysis was used to discriminate cutaneous neurofibromas from physiological tissues with a sensitivity of 100%, specificity of 97.3%, and overall classification accuracy of 97.6%. The results enable the presented optical, non-invasive technique in combination with artificial intelligence as a promising candidate to ameliorate both, diagnosis and treatment of patients affected by cutaneous neurofibroma and NF1.
Collapse
Affiliation(s)
- Levi Matthies
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hendrik Amir-Kabirian
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Medhanie T. Gebrekidan
- Institute of Thermal-, Environmental- and Resources‘ Process Engineering, Technische Universität Bergakademie Freiberg, Freiberg, Germany
| | - Andreas S. Braeuer
- Institute of Thermal-, Environmental- and Resources‘ Process Engineering, Technische Universität Bergakademie Freiberg, Freiberg, Germany
| | - Ulrike S. Speth
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Division of “Regenerative Orofacial Medicine”, Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Hagel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Gosau
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Knipfer
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Reinhard E. Friedrich
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
2
|
Ilchenko O, Pilhun Y, Kutsyk A, Slobodianiuk D, Goksel Y, Dumont E, Vaut L, Mazzoni C, Morelli L, Boisen S, Stergiou K, Aulin Y, Rindzevicius T, Andersen TE, Lassen M, Mundhada H, Jendresen CB, Philipsen PA, Hædersdal M, Boisen A. Optics miniaturization strategy for demanding Raman spectroscopy applications. Nat Commun 2024; 15:3049. [PMID: 38589380 PMCID: PMC11001912 DOI: 10.1038/s41467-024-47044-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 03/12/2024] [Indexed: 04/10/2024] Open
Abstract
Raman spectroscopy provides non-destructive, label-free quantitative studies of chemical compositions at the microscale as used on NASA's Perseverance rover on Mars. Such capabilities come at the cost of high requirements for instrumentation. Here we present a centimeter-scale miniaturization of a Raman spectrometer using cheap non-stabilized laser diodes, densely packed optics, and non-cooled small sensors. The performance is comparable with expensive bulky research-grade Raman systems. It has excellent sensitivity, low power consumption, perfect wavenumber, intensity calibration, and 7 cm-1 resolution within the 400-4000 cm-1 range using a built-in reference. High performance and versatility are demonstrated in use cases including quantification of methanol in beverages, in-vivo Raman measurements of human skin, fermentation monitoring, chemical Raman mapping at sub-micrometer resolution, quantitative SERS mapping of the anti-cancer drug methotrexate and in-vitro bacteria identification. We foresee that the miniaturization will allow realization of super-compact Raman spectrometers for integration in smartphones and medical devices, democratizing Raman technology.
Collapse
Affiliation(s)
- Oleksii Ilchenko
- Technical University of Denmark, Department of Health Technology, Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Kgs. Lyngby, Denmark.
- Lightnovo ApS, Birkerød, Denmark.
| | - Yurii Pilhun
- Lightnovo ApS, Birkerød, Denmark
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Andrii Kutsyk
- Lightnovo ApS, Birkerød, Denmark
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
- Technical University of Denmark, Department of Energy Conversion and Storage, Kgs. Lyngby, Denmark
| | - Denys Slobodianiuk
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
- Institute of Magnetism, Kyiv, Ukraine
| | - Yaman Goksel
- Technical University of Denmark, Department of Health Technology, Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Kgs. Lyngby, Denmark
| | - Elodie Dumont
- Technical University of Denmark, Department of Health Technology, Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Kgs. Lyngby, Denmark
| | - Lukas Vaut
- Technical University of Denmark, Department of Health Technology, Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Kgs. Lyngby, Denmark
| | - Chiara Mazzoni
- Technical University of Denmark, Department of Health Technology, Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Kgs. Lyngby, Denmark
| | - Lidia Morelli
- Technical University of Denmark, Department of Health Technology, Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Kgs. Lyngby, Denmark
| | | | | | | | - Tomas Rindzevicius
- Technical University of Denmark, Department of Health Technology, Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Kgs. Lyngby, Denmark
| | - Thomas Emil Andersen
- Department of Clinical Microbiology, Odense University Hospital and Research Unit of Clinical Microbiology, University of Southern Denmark, Odense, Denmark
| | | | | | | | | | - Merete Hædersdal
- Department of Dermatology, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Copenhagen University, Copenhagen, Denmark
| | - Anja Boisen
- Technical University of Denmark, Department of Health Technology, Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Kgs. Lyngby, Denmark
| |
Collapse
|
3
|
Fu H, Li M, Guo M, Tang H, Zhang T, Li H. On-line Raman spectroscopy combined with multivariate curve resolution-alternating least squares (MCR-ALS) to investigate the synthesis mechanism of 3,5-diamino-1,2,4-triazole (DAT). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 289:122231. [PMID: 36527968 DOI: 10.1016/j.saa.2022.122231] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/27/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
The precise and accurate synthesis mechanism of typical energetic materials (EMs) intermediate is extremely important for the optimization of synthesis technology of EMs. In this research, on-line Raman spectroscopy technique combined with multivariate curve resolution-alternating least squares(MCR-ALS) method was proposed and used to investigate the synthesis mechanism of EMs intermediate (3,5-diamino-1,2,4-triazole, DAT). Initially, on-line Raman spectroscopy was applied to collect the Raman spectral data of DAT synthesis process. Secondly, principal component analysis (PCA), coupled with singular value decomposition (SVD) were used to determine the number of component of the reaction system and the components was 5. Thirdly, MCR-ALS was used to extract the pure Raman spectra and concentration curves of each substance of DAT synthesis process. During the MCR-ALS operation, evolving factor analysis (EFA) was choose to acquire the initial concentration estimation for MCR-ALS. Several constraints were selected to apply to ALS optimization including non-negative, closure, equality and correlation constraint. And the correlation coefficient between the Raman spectra and the actual Raman spectra of the hydrazine hydrochloride, dicyandiamide and DAT was calculated, their correlation coefficient R2 were 0.9522, 0.9446, 0.9908 respectively which showed a good data fit of MCR-ALS method. Finally, according to the results of MCR-ALS analysis, the structure of the synthetic intermediates was successfully deduced and the mechanism of DAT synthesis was proposed. Hence, a precise and comprehensive method for analyzing the DAT synthesis reaction mechanism is proposed, which is helpful to provide a new idea for the analysis of the synthesis reaction mechanism of energetic materials.
Collapse
Affiliation(s)
- Han Fu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| | - Maogang Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| | - Mengjun Guo
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| | - Hongsheng Tang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| | - Tianlong Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China.
| | - Hua Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China; College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| |
Collapse
|
4
|
Feng L, He X, Li Y, Wei L, Nie Y, Jing J, Zhou J. Compact Shortwave Infrared Imaging Spectrometer Based on a Catadioptric Prism. SENSORS 2022; 22:s22124611. [PMID: 35746393 PMCID: PMC9228206 DOI: 10.3390/s22124611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/12/2022] [Accepted: 06/15/2022] [Indexed: 02/01/2023]
Abstract
This article demonstrates a compact prism imaging spectrometer method. A catadioptric curved prism is located at the secondary mirror position of the spectrometer and used to balance the aberrations, enlarge the dispersion width, and decrease the volume. A mathematical model of the prism and spectrometer is derived, which provides an optimal initial structure for a non-coaxial spectrometer, simplifying the optical design process and reducing the system volume. Using this method, a compact shortwave infrared imaging spectrometer with a 16° field of view is designed with an F-number/3, and the measured spectrum ranges from 0.95 to 2.5 μm. The performance is analyzed and evaluated. Laboratory testing results prove the excellent optical performance, and under the same specifications, the spectrometer length decreases by 40%.
Collapse
Affiliation(s)
- Lei Feng
- Key Laboratory of Computational Optical Imaging Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China; (L.F.); (X.H.); (Y.L.); (L.W.); (J.J.)
| | - Xiaoying He
- Key Laboratory of Computational Optical Imaging Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China; (L.F.); (X.H.); (Y.L.); (L.W.); (J.J.)
| | - Yacan Li
- Key Laboratory of Computational Optical Imaging Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China; (L.F.); (X.H.); (Y.L.); (L.W.); (J.J.)
| | - Lidong Wei
- Key Laboratory of Computational Optical Imaging Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China; (L.F.); (X.H.); (Y.L.); (L.W.); (J.J.)
| | - Yunfeng Nie
- Department of Applied Physics and Photonics, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Juanjuan Jing
- Key Laboratory of Computational Optical Imaging Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China; (L.F.); (X.H.); (Y.L.); (L.W.); (J.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinsong Zhou
- Key Laboratory of Computational Optical Imaging Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China; (L.F.); (X.H.); (Y.L.); (L.W.); (J.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence:
| |
Collapse
|
5
|
Korinth F, Shaik TA, Popp J, Krafft C. Assessment of shifted excitation Raman difference spectroscopy in highly fluorescent biological samples. Analyst 2021; 146:6760-6767. [PMID: 34704561 DOI: 10.1039/d1an01376a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Shifted excitation Raman difference spectroscopy (SERDS) can be used as an instrumental baseline correction technique to retrieve Raman bands in highly fluorescent samples. Genipin (GE) cross-linked equine pericardium (EP) was used as a model system since a blue pigment is formed upon cross-linking, which results in a strong fluorescent background in the Raman spectra. EP was cross-linked with 0.25% GE solution for 0.5 h, 2 h, 4 h, 6 h, 12 h, and 24 h, and compared with corresponding untreated EP. Raman spectra were collected with three different excitation wavelengths. For the assessment of the SERDS technique, the preprocessed SERDS spectra of two excitation wavelengths (784 nm-786 nm) were compared with the mathematical baseline-corrected Raman spectra at 785 nm excitation using extended multiplicative signal correction, rubberband, the sensitive nonlinear iterative peak and polynomial fitting algorithms. Whereas each baseline correction gave poor quality spectra beyond 6 h GE crosslinking with wave-like artefacts, the SERDS technique resulted in difference spectra, that gave superior reconstructed spectra with clear collagen and resonance enhanced GE pigment bands with lower standard deviation. Key for this progress was an advanced difference optimization approach that is described here. Furthermore, the results of the SERDS technique were independent of the intensity calibration because the system transfer response was compensated by calculating the difference spectrum. We conclude that this SERDS strategy can be transferred to Raman studies on biological and non-biological samples with a strong fluorescence background at 785 nm and also shorter excitation wavelengths which benefit from more intense scattering intensities and higher quantum efficiencies of CCD detectors.
Collapse
Affiliation(s)
- Florian Korinth
- Leibniz Institute of Photonic Technology and Member of Leibniz Research Alliance "Health Technologies", 07745 Jena, Germany. .,Leibniz Institute for Astrophysics Potsdam and Member of Leibniz Research Alliance "Health Technologies", 14482 Potsdam, Germany
| | - Tanveer Ahmed Shaik
- Leibniz Institute of Photonic Technology and Member of Leibniz Research Alliance "Health Technologies", 07745 Jena, Germany.
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology and Member of Leibniz Research Alliance "Health Technologies", 07745 Jena, Germany. .,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, 07743 Jena, Germany
| | - Christoph Krafft
- Leibniz Institute of Photonic Technology and Member of Leibniz Research Alliance "Health Technologies", 07745 Jena, Germany.
| |
Collapse
|
6
|
The role of Raman spectroscopy in biopharmaceuticals from development to manufacturing. Anal Bioanal Chem 2021; 414:969-991. [PMID: 34668998 PMCID: PMC8724084 DOI: 10.1007/s00216-021-03727-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/08/2021] [Indexed: 12/21/2022]
Abstract
Biopharmaceuticals have revolutionized the field of medicine in the types of active ingredient molecules and treatable indications. Adoption of Quality by Design and Process Analytical Technology (PAT) frameworks has helped the biopharmaceutical field to realize consistent product quality, process intensification, and real-time control. As part of the PAT strategy, Raman spectroscopy offers many benefits and is used successfully in bioprocessing from single-cell analysis to cGMP process control. Since first introduced in 2011 for industrial bioprocessing applications, Raman has become a first-choice PAT for monitoring and controlling upstream bioprocesses because it facilitates advanced process control and enables consistent process quality. This paper will discuss new frontiers in extending these successes in upstream from scale-down to commercial manufacturing. New reports concerning the use of Raman spectroscopy in the basic science of single cells and downstream process monitoring illustrate industrial recognition of Raman’s value throughout a biopharmaceutical product’s lifecycle. Finally, we draw upon a nearly 90-year history in biological Raman spectroscopy to provide the basis for laboratory and in-line measurements of protein quality, including higher-order structure and composition modifications, to support formulation development.
Collapse
|
7
|
Schie IW, Stiebing C, Popp J. Looking for a perfect match: multimodal combinations of Raman spectroscopy for biomedical applications. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210137VR. [PMID: 34387049 PMCID: PMC8358667 DOI: 10.1117/1.jbo.26.8.080601] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Raman spectroscopy has shown very promising results in medical diagnostics by providing label-free and highly specific molecular information of pathological tissue ex vivo and in vivo. Nevertheless, the high specificity of Raman spectroscopy comes at a price, i.e., low acquisition rate, no direct access to depth information, and limited sampling areas. However, a similar case regarding advantages and disadvantages can also be made for other highly regarded optical modalities, such as optical coherence tomography, autofluorescence imaging and fluorescence spectroscopy, fluorescence lifetime microscopy, second-harmonic generation, and others. While in these modalities the acquisition speed is significantly higher, they have no or only limited molecular specificity and are only sensitive to a small group of molecules. It can be safely stated that a single modality provides only a limited view on a specific aspect of a biological specimen and cannot assess the entire complexity of a sample. To solve this issue, multimodal optical systems, which combine different optical modalities tailored to a particular need, become more and more common in translational research and will be indispensable diagnostic tools in clinical pathology in the near future. These systems can assess different and partially complementary aspects of a sample and provide a distinct set of independent biomarkers. Here, we want to give an overview on the development of multimodal systems that use RS in combination with other optical modalities to improve the diagnostic performance.
Collapse
Affiliation(s)
- Iwan W. Schie
- Leibniz Institute of Photonic Technology, Jena, Germany
- University of Applied Sciences—Jena, Department for Medical Engineering and Biotechnology, Jena, Germany
| | | | - Jürgen Popp
- Leibniz Institute of Photonic Technology, Jena, Germany
- Friedrich Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Jena, Germany
| |
Collapse
|