1
|
Cao J, Shi Y, Chen J, Yan Z, Zhang M, Jin M, Shui L, Liu Z, Feng H. An innovative strategy for Gefitinib quantification in pharmaceutical and plasma samples using a graphene quantum dots-combined gold nanoparticles composite electrochemical sensor. Mikrochim Acta 2024; 191:697. [PMID: 39446161 DOI: 10.1007/s00604-024-06766-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
An innovative methodology is proposed for quantifying Gefitinib (GFT) using an electrochemical sensor constructed from a composite of graphene quantum dots (GQDs) and gold nanoparticles (AuNPs). GQDs were synthesized from graphite, preserving graphene's large surface area and excellent electron transfer capabilities while enhancing dispersibility. The combination of GQDs with AuNPs resulted in an AuNPs@GQDs composite, which was used to construct the sensor. The synthesized nanomaterials were characterized using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and the electrochemical performance of the sensor was evaluated via cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Under optimized conditions, the sensor displayed a linear calibration curve for GFT detection within the range 0.01 to 10.0 µM, with a limit of detection (LOD) of 0.005 µM (S/N = 3). The sensor demonstrated excellent anti-interference properties and stability in tests using pharmaceutical formulations and plasma samples. Compared to chromatographic methods, the sensor exhibited similar accuracy and recovery. Its easy fabrication and high sensitivity make it a promising tool for pharmaceutical analysis and clinical therapeutic drug monitoring.
Collapse
Affiliation(s)
- Jieping Cao
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, PR China
| | - Yingmei Shi
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, PR China
| | - Juntong Chen
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, PR China
| | - Zhibin Yan
- Joint Laboratory of Optofluidic Technology and System,National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, PR China
| | - Minmin Zhang
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, PR China
| | - Mingliang Jin
- Joint Laboratory of Optofluidic Technology and System,National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, PR China
| | - Lingling Shui
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, PR China.
- Joint Laboratory of Optofluidic Technology and System,National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, PR China.
| | - Zhenping Liu
- Joint Laboratory of Optofluidic Technology and System,National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, PR China.
| | - Huiling Feng
- Department of pharmacy, Ganzhou People's Hospital, Ganzhou, 341000, PR China.
| |
Collapse
|
2
|
Ashaiba A, Sapna K, Arun AB, Tellis RC, Prasad KS. Development and Evaluation of a Noninvasive Microfluidic-Based Paper Analytical Device for Leptospirosis Diagnosis. Anal Chem 2024; 96:11997-12005. [PMID: 38991147 DOI: 10.1021/acs.analchem.4c01934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Leptospirosis is a re-emerging infectious disease that presents a diagnostic enigma for clinicians with frequent misdiagnosis due to lack of rapid and accurate diagnostic tests, as the current methods are encumbered by inherent limitations. The development of a diagnostic sensor with a sample-in-result-out capability is pivotal for prompt diagnosis. Herein, we developed a microfluidic paper-based analytical device (spin-μPAD) featuring a sample-in-result-out fashion for the detection of Leptospira specific urinary biomarker, sph2 sphingomyelinase, crucial for noninvasive point-of-care testing. Fabrication of paper devices involved precise photolithography techniques, ensuring a high degree of reproducibility and replicability. By optimizing the device's configuration and protein components, a remarkable sensitivity and specificity was achieved for detecting leptospiral sph2 in urine, even at low concentrations down to 1.5 fg/mL, with an assay time of 15 min. Further, the spin-μPAD was validated with 20 clinical samples, suspected of leptospirosis including other febrile illnesses, and compared with gold standard microscopic agglutination test, culture, Lepto IgM ELISA, darkfield microscopy, and Leptocheck WB spot test. In contrast to commercial diagnostic tools, the spin-μPAD was noninvasive, rapid, easy to use, specific, sensitive, and cost-effective. The results highlight the potential of this innovative spin-μPAD for an efficient and dependable approach to noninvasive leptospirosis diagnosis, addressing critical needs in the realms of public health and clinical settings.
Collapse
Affiliation(s)
- Asiamma Ashaiba
- Department of Microbiology, Yenepoya Medical College, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575 018, India
- Nanomaterial Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575 018, India
| | - Kannan Sapna
- Nanomaterial Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575 018, India
| | | | - Rouchelle C Tellis
- Department of Microbiology, Yenepoya Medical College, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575 018, India
| | - Kariate Sudhakara Prasad
- Nanomaterial Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575 018, India
- Centre for Nutrition Studies, Yenepoya (Deemed to be University), Mangalore 575 018, India
| |
Collapse
|
3
|
Suwannin P, Jangpatarapongsa K, Polpanich D, Alhibshi A, Errachid A, Elaissari A. Enhancing leptospirosis control with nanosensing technology: A critical analysis. Comp Immunol Microbiol Infect Dis 2024; 104:102092. [PMID: 37992537 DOI: 10.1016/j.cimid.2023.102092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/24/2023]
Abstract
Leptospirosis is a serious health problem in tropical areas; thus, animals shed leptospires in the environment. Humans are accidental hosts infected through exposure to contaminating bacteria in the environment. One health strategy can be applied to protect and eliminate leptospirosis because this cooperates and coordinates activities between doctors, veterinarians, and ecologists. However, conventional methods still have limitations. Therefore, the main challenges of leptospirosis control are the high sensing of detection methods to screen and control the pathogens. Interestingly, nano sensing combined with a leptospirosis detection approach can increase the sensitivity and eliminate some limitations. This article reviews nanomaterial development for an advanced leptospirosis detection method, e.g., latex beads-based agglutination test, magnetic nanoparticles enrichment, and gold-nanoparticles-based immunochromatographic assay. Thus, nanomaterials can be functionalized with biomolecules or sensing molecules utilized in various mechanisms such as biosensors. Over the last decade, many biosensors have been developed for Leptospira spp. pathogen and others. The evolution of biosensors for leptospirosis detection was designed for high efficiency and might be an alternative tool. In addition, the high-sensing fabrications are useful for leptospires screening in very low levels, for example, soil or water from the environment.
Collapse
Affiliation(s)
- Patcharapan Suwannin
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand; Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Villeurbanne 69622, France
| | - Kulachart Jangpatarapongsa
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Duangporn Polpanich
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Amani Alhibshi
- Department of Neuroscience Research, Institute of Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Abdelhamid Errachid
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Villeurbanne 69622, France
| | - Abdelhamid Elaissari
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Villeurbanne 69622, France.
| |
Collapse
|
4
|
Atay E, Altan A. Nanomaterial interfaces designed with different biorecognition elements for biosensing of key foodborne pathogens. Compr Rev Food Sci Food Saf 2023; 22:3151-3184. [PMID: 37222549 DOI: 10.1111/1541-4337.13179] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/25/2023]
Abstract
Foodborne diseases caused by pathogen bacteria are a serious problem toward the safety of human life in a worldwide. Conventional methods for pathogen bacteria detection have several handicaps, including trained personnel requirement, low sensitivity, laborious enrichment steps, low selectivity, and long-term experiments. There is a need for precise and rapid identification and detection of foodborne pathogens. Biosensors are a remarkable alternative for the detection of foodborne bacteria compared to conventional methods. In recent years, there are different strategies for the designing of specific and sensitive biosensors. Researchers activated to develop enhanced biosensors with different transducer and recognition elements. Thus, the aim of this study was to provide a topical and detailed review on aptamer, nanofiber, and metal organic framework-based biosensors for the detection of food pathogens. First, the conventional methods, type of biosensors, common transducer, and recognition element were systematically explained. Then, novel signal amplification materials and nanomaterials were introduced. Last, current shortcomings were emphasized, and future alternatives were discussed.
Collapse
Affiliation(s)
- Elif Atay
- Department of Food Engineering, Mersin University, Mersin, Turkey
| | - Aylin Altan
- Department of Food Engineering, Mersin University, Mersin, Turkey
| |
Collapse
|
5
|
Cui Q, Zhong Y, Shang W, Deng F, Wang B, Wu J, Wang P, Wan L, Wang K, Fang L, Dai R, Zhang H, Ledesma-Amaro R, Zhang Y, Huang J. Fluorescent Probe Combined with Photoelectric Analysis Technology for Detection of Escherichia coli. BIOSENSORS 2023; 13:150. [PMID: 36831916 PMCID: PMC9953772 DOI: 10.3390/bios13020150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Food safety is facing great challenges in preventing foodborne diseases caused by pathogenic pollution, especially in resource-limited areas. The rapid detection technique of microorganisms, such as immunological methods and molecular biological methods, plays a crucial key in timely bioanalysis and disease treatment strategies. However, it is difficult for these methods to simultaneously meet the criteria of simple operation, high specificity, and sensitivity, as well as low cost. Coconut water is known as the "water of life" in Hainan. It is a refreshing and nutritious beverage which is widely consumed due to its beneficial properties to health. Coconut water processing is an important pillar industry in Hainan. The detection of pathogenic microorganisms, such as Escherichia coli, in coconut water has become an important factor which has restricted the upgrading and development of this industry. Based on the needs of industrial development, we developed a microbial photoelectric detection system which was composed of a fluorescent probe detection reagent and a photoelectric sensor detection device. This system combined microbial enzyme targets, selective fluorescent substrate metabolism characteristics, and a photoelectric sensor signal transduction mechanism, which produce a strong signal with a high signal-to-noise ratio. The microbial detection system developed here has a simple structure, simple and convenient operation, short detecting time (≥2 h), and high sensitivity (1 CFU/mL). This system may also enable early warning and monitoring programs for other pathogenic microorganisms in order to promote the overall competitiveness of the Hainan coconut water industry.
Collapse
Affiliation(s)
- Qian Cui
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Yongjie Zhong
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Wenkai Shang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Fuming Deng
- Coconut Research Center, Coconut Research Institute, Chinese Academy of Tropical Agricultural Science (CATAS), Haikou 570228, China
| | - Buhua Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Jiajia Wu
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-Fouling Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Peng Wang
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-Fouling Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Liudang Wan
- Insititue of Biotechnology, ViewKr, Haikou 570228, China
| | - Keling Wang
- Insititue of Biotechnology, ViewKr, Haikou 570228, China
| | - Lingchen Fang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Rui Dai
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Han Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
| | - Yunuo Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Jiaomei Huang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| |
Collapse
|
6
|
Ashaiba A, Arun AB, Prasad KS, Tellis RC. Leptospiral sphingomyelinase Sph2 as a potential biomarker for diagnosis of leptospirosis. J Microbiol Methods 2022; 203:106621. [PMID: 36375539 DOI: 10.1016/j.mimet.2022.106621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
Leptospirosis is an underestimated infectious tropical disease caused by the spirochetes belonging to the genus Leptospira. Leptospirosis is grossly underdiagnosed due to its myriad symptoms, varying from mild febrile illness to severe haemorrhage. Laboratory tests for leptospirosis is an extremely important and potent way for disease diagnosis, as the clinical manifestations are very similar to other febrile diseases. Currently available diagnostic techniques are time-consuming, require expertise and sophisticated instruments, and cannot identify the disease at an early phase of infection. Early diagnosis of leptospirosis is the need of the hour while considering the severe complications after the infection and the rate of mortality after misdiagnosis. Secretion of Leptospira-specific sphingomyelinases in leptospirosis patient's urine within a few days of the onset of infection is quite common and is a virulence factor present only in pathogenic Leptospira species. Herein, the structural and functional importance of leptospiral sphingomyelinase Sph2 in leptospirosis pathogenesis, as well as the potential of screening urinary Sph2 for diagnosis and the scope for developing a rapid and easily affordable point-of-care test for urinary leptospiral sphingomyelinase Sph2 as an alternative to current diagnostic methods are discussed.
Collapse
Affiliation(s)
- A Ashaiba
- Department of Microbiology, Yenepoya Medical College, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575 018, India; Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575 018, India
| | - A B Arun
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575 018, India
| | - K Sudhakara Prasad
- Nano Materials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575 018, India; Centre for Nutrition Studies, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575 018, India.
| | - Rouchelle C Tellis
- Department of Microbiology, Yenepoya Medical College, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575 018, India.
| |
Collapse
|
7
|
Kumar H, Valko M, Alomar SY, Alwasel SH, Cruz-Martins N, Kuča K, Kumar D. Electrochemical immunosensor for the detection of colistin in chicken liver. 3 Biotech 2022; 12:190. [PMID: 35910287 PMCID: PMC9325936 DOI: 10.1007/s13205-022-03252-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/03/2022] [Indexed: 11/25/2022] Open
Abstract
An innovative amperometric immunosensor has been developed to detect antibiotic colistin from the chicken liver. Colistin is a antibacterial peptide that has been barred for human consumption, but it is being commonly used as a veterinary drug, and as a feed additive for livestock. In the present work, an immunosensor was developed by immobilizing an anti-colistin Ab onto the CNF/AuNPs surface of the screen-printed electrode. The sensor records electrochemical response in the chicken liver spiked with colistin with CV. Additionally, the characterization of electrode surface was done with FE-SEM, FTIR, and EIS at each step of fabrication. The lower LOD was 0.89 μgKg-1, with a R 2 of 0.901 using CV. Further validation of the immunosensor was conducted using commercial chicken liver samples, by comparing the results to those obtained using traditional methods. The fabricated immunosensor showed high specificity towards colistin, which remained stable for 6 months but with a 13% loss in the initial CV current.
Collapse
Affiliation(s)
- Harsh Kumar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229 India
| | - Marian Valko
- Faculty of Chemical and Food Technology, Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology, 81237 Bratislava, Slovakia
- Zoology Department, College of Science, King Saud University, Riyadh, 11451 Saudi Arabia
| | - Suliman Y. Alomar
- Zoology Department, College of Science, King Saud University, Riyadh, 11451 Saudi Arabia
| | - Saleh H. Alwasel
- Zoology Department, College of Science, King Saud University, Riyadh, 11451 Saudi Arabia
| | - Natália Cruz-Martins
- Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, PRD Portugal
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, 18071 Granada, Spain
| | - Dinesh Kumar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229 India
| |
Collapse
|
8
|
Kala D, Sharma TK, Gupta S, Saini RV, Saini AK, Alsanie WF, Thakur VK, Kaushal A. Development of paper-based DNA sensor for detection of O. tsutsugamushi using sustainable GQDs@AuNPs nanocomposite. CHEMOSPHERE 2022; 300:134428. [PMID: 35395271 DOI: 10.1016/j.chemosphere.2022.134428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/16/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
The graphene quantum dots (GQDs) was synthesized using potato starch and water by hydrothermal method and further used for reduction of tetracholoroauric acid to form graphene quantum dots-gold (GQDs@AuNPs) nanocomposite. The GQDs/GQDs@AuNPs were analyzed using FTIR, UV-Vis, Flourometry and HR-TEM. The synthesized GQDs@AuNPs were further used for fabrication of cost-effective screen-printed paper electrode (SPPE) based DNA sensor for the detection of O. tsutsugamushi using htrA gene specific 5'NH2 linked DNA probe. Modification of SPPE using GQDs@AuNPs nanocomposite and ssDNA probe was monitored using EIS, FTIR, FE-SEM and AFM. The sensor detection limit (LOD) was assessed as 0.002 ng/μl from the standard calibration curve with the correlation coefficient, R2 = 0.993. The sensitivity of the DNA sensor was calculated as 7700 μA/cm2/ng for ssGDNA of O. tsutsugamushi using cyclic voltammetry. The sensor validation was done using scrub typhus patient's blood DNA samples. The sensor showed good storage stability at 4 °C for six months with just a loss of 12% of the initial current values. The SPPE/DNA sensor developed is very specific, sensitive, stable and detects O. tsutsugamushi in less time.
Collapse
Affiliation(s)
- Deepak Kala
- Amity Center of Nanotechnology, Amity University, Haryana, 122413, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India
| | - Tarun Kumar Sharma
- Department of Medical Biotechnology, Gujarat Biotechnology University (GBU), Gujarat International Finance and Tec (GIFT) City. Gandhinagar, Gujarat, 382355, India
| | - Shagun Gupta
- Department of Biotechnology, Maharishi Markandeshwar University, Mullana, Ambala, 134003, India
| | - Reena V Saini
- Department of Biotechnology, Maharishi Markandeshwar University, Mullana, Ambala, 134003, India
| | - Adesh K Saini
- Department of Biotechnology, Maharishi Markandeshwar University, Mullana, Ambala, 134003, India
| | - Walaa F Alsanie
- Department of Clinical Laboratories Sciences, The Faculty of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Vijay Kumar Thakur
- Biorefining and Advances Materials Research Centre, SRUC (Scotland's Rural College), Kings Buildings, Edinburgh, EH9 3JG, UK; School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun, 248007, India
| | - Ankur Kaushal
- Amity Center of Nanotechnology, Amity University, Haryana, 122413, India; Department of Biotechnology, Maharishi Markandeshwar University, Mullana, Ambala, 134003, India.
| |
Collapse
|
9
|
Anand U, Chandel AKS, Oleksak P, Mishra A, Krejcar O, Raval IH, Dey A, Kuca K. Recent advances in the potential applications of luminescence-based, SPR-based, and carbon-based biosensors. Appl Microbiol Biotechnol 2022; 106:2827-2853. [PMID: 35384450 PMCID: PMC8984675 DOI: 10.1007/s00253-022-11901-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 12/20/2022]
Abstract
Abstract The need for biosensors has evolved in the detection of molecules, diseases, and pollution from various sources. This requirement has headed to the development of accurate and powerful equipment for analysis using biological sensing component as a biosensor. Biosensors have the advantage of rapid detection that can beat the conventional methods for the detection of the same molecules. Bio-chemiluminescence-based sensors are very sensitive during use in biological immune assay systems. Optical biosensors are emerging with time as they have the advantage that they act with a change in the refractive index. Carbon nanotube-based sensors are another area that has an important role in the biosensor field. Bioluminescence gives much higher quantum yields than classical chemiluminescence. Electro-generated bioluminescence has the advantage of miniature size and can produce a high signal-to-noise ratio and the controlled emission. Recent advances in biological techniques and instrumentation involving fluorescence tag to nanomaterials have increased the sensitivity limit of biosensors. Integrated approaches provided a better perspective for developing specific and sensitive biosensors with high regenerative potentials. This paper mainly focuses on sensors that are important for the detection of multiple molecules related to clinical and environmental applications. Key points • The review focusses on the applications of luminescence-based, surface plasmon resonance-based, carbon nanotube-based, and graphene-based biosensors • Potential clinical, environmental, agricultural, and food industry applications/uses of biosensors have been critically reviewed • The current limitations in this field are discussed, as well as the prospects for future advancement
Collapse
Affiliation(s)
- Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel
| | - Arvind K Singh Chandel
- Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Patrik Oleksak
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic
| | - Amarnath Mishra
- Faculty of Science and Technology, Amity Institute of Forensic Sciences, Amity University Uttar Pradesh, Noida, 201313, India.
| | - Ondrej Krejcar
- Center for Basic and Applied Science, Faculty of Informatics and Management, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic
| | - Ishan H Raval
- Council of Scientific and Industrial Research - Central Salt and Marine Chemicals Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat, 364002, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic.
- Center for Basic and Applied Science, Faculty of Informatics and Management, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic.
- Biomedical Research Center, University Hospital Hradec Kralove, 50005, Hradec Kralove, Czech Republic.
| |
Collapse
|
10
|
Hwee SE, Htet NH, Naing C, Tung WS, Mak JW. Rapid diagnostic test (Leptocheck-WB) for detection of acute leptospirosis: a meta-analysis of diagnostic accuracy. Eur J Clin Microbiol Infect Dis 2022; 41:631-640. [PMID: 35147814 DOI: 10.1007/s10096-022-04420-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/04/2022] [Indexed: 12/26/2022]
Abstract
The majority of leptospirosis is subclinical or mild self-limiting systemic illness. A rapid and accurate diagnostic test for the detection of leptospirosis is essential to prevent disease progression from acute non-severe illness to potentially fatal infection. Rapid diagnostic tests (RDTs) recognized as point-of-care (PoC) tests may support clinical decision-making in resource-poor settings. We aimed to assess the accuracy of PoC (Leptocheck-WB) for the detection of acute leptospirosis by meta-analysis of data from eligible studies. This study adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis for Diagnostic Test Accuracy (PRISMA-DTA) guideline. The pooling of data was done only when there were two or more studies that used a particular type of reference test. A total of ten studies (n = 5369) were identified. The majority (70%) were from the Asian region. Using microscopic agglutination test (MAT) as reference test, the pooled sensitivity (0.75, 95% CI: 0.64 to 0.84, 10 studies, I2: 85.9%) and specificity (0.87, 95% CI: 0.77 to 0.94, 10 studies, I2: 97.37%) of Leptocheck-WB in the detection of leptospirosis were moderate. With the use of enzyme-linked immunosorbent assay (ELISA) reference test, the pooled sensitivity 0.85 (95% CI: 0.79 to 0.9, 4 studies, I2: 27.49%) and specificity 0.79 (95% CI: 0.71 to 0.85, 4 studies, I2: 58.9%) of Leptocheck-WB were also moderate. Diagnostic odds ratio of Leptocheck-WB with MAT (21, 95% CI: 10-44) or with ELISA as reference test (21, 95% CI: 9-46) showed an acceptable level of accuracy. Meta-regression analysis showed methodological quality of studies (p: 0.06) and study design (p: 0.09) were potential factors that affected the accuracy of Leptocheck-WB test. Findings suggest that Leptocheck-WB has a moderate level of acceptance for detection of acute leptospirosis. Further confirmation with large-sampled, prospectively designed studies using the same samples for evaluating test accuracy is recommended.
Collapse
Affiliation(s)
- Siau Ek Hwee
- International Medial University, Kuala Lumpur, Malaysia
| | | | - Cho Naing
- Division of Tropical Health and Medicine, James Cook University, Queensland, Australia.
| | | | - Joon Wah Mak
- International Medial University, Kuala Lumpur, Malaysia
| |
Collapse
|
11
|
Bothammal P, Michelraj S, Venkatachalam G, Verma A, Natarajaseenivasan K. Electrochemical biosensor for serogroup specific diagnosis of leptospirosis. Bioelectrochemistry 2022; 144:108005. [PMID: 34864273 DOI: 10.1016/j.bioelechem.2021.108005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 11/18/2021] [Accepted: 11/21/2021] [Indexed: 11/02/2022]
Abstract
A problem with the current leptospirosis diagnostic methods is the low sensitivity and specificity during the acute phase of illness. Rapid point-of-care (POC) assays with minimal sample utilization and low cost are desired in clinical practice. Here, we report for the first time lipopolysaccharide (LPS) based electrochemical biosensor that offers a rapid, highly sensitive, serogroup specific diagnosis of leptospirosis during the acute stage of infection and also to distinguish from other flu like infections. The proposed sensor is fabricated by the immobilization of LPS onto dodecanethiol (DT) modified gold electrode. Monolayer of DT is attached through covalent bond (Au-S) interaction onto the gold electrode. Thus, leptospiral antibodies from the human serum samples bind to the LPS present on self-assembled monolayer (SAM) of DT and showed a higher RCT value compared to SAM. The detection limit of the developed LPS sensor is estimated to be 100 nM. This biosensor is the first electrochemical sensing platform used for detection of LPS from Leptospira spp. This method is completely a solution-based diagnostic method and therefore it is rapid, simple, and sensitive; thus establishing a key technology towards a useful POC diagnostic strategy in serogroup level and hence an alternative to MAT.
Collapse
Affiliation(s)
- Palanisamy Bothammal
- Medical Microbiology Laboratory, Department of Microbiology, Center for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli - 620 024, Tamil Nadu, India
| | - Singarayan Michelraj
- Electrodics and Electrocatalysis (EEC) Division, CSIR - Central Electrochemical Research Institute (CSIR - CECRI), Karaikudi - 630003, Tamil Nadu, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ganesh Venkatachalam
- Electrodics and Electrocatalysis (EEC) Division, CSIR - Central Electrochemical Research Institute (CSIR - CECRI), Karaikudi - 630003, Tamil Nadu, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Ashutosh Verma
- Lincoln Memorial University, College of Veterinary Medicine, Harrogate, TN 37752, USA.
| | - Kalimuthusamy Natarajaseenivasan
- Medical Microbiology Laboratory, Department of Microbiology, Center for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli - 620 024, Tamil Nadu, India; Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
12
|
Sapna K, Ashaiba A, Kumar TR, Shashidhar V, Arun A, Prasad KS. Evaluation of anti-LipL32 carbon nanotube immunofluorescence probe (carbo-lip) and comparison with MAT, IgM ELISA, IgM spot test and culture for early detection of leptospirosis at local hospital. J Microbiol Methods 2022; 195:106448. [DOI: 10.1016/j.mimet.2022.106448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 11/28/2022]
|
13
|
Que M, Lin C, Sun J, Chen L, Sun X, Sun Y. Progress in ZnO Nanosensors. SENSORS (BASEL, SWITZERLAND) 2021; 21:5502. [PMID: 34450944 PMCID: PMC8401939 DOI: 10.3390/s21165502] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/05/2021] [Accepted: 08/12/2021] [Indexed: 12/28/2022]
Abstract
Developing various nanosensors with superior performance for accurate and sensitive detection of some physical signals is essential for advances in electronic systems. Zinc oxide (ZnO) is a unique semiconductor material with wide bandgap (3.37 eV) and high exciton binding energy (60 meV) at room temperature. ZnO nanostructures have been investigated extensively for possible use as high-performance sensors, due to their excellent optical, piezoelectric and electrochemical properties, as well as the large surface area. In this review, we primarily introduce the morphology and major synthetic methods of ZnO nanomaterials, with a brief discussion of the advantages and weaknesses of each method. Then, we mainly focus on the recent progress in ZnO nanosensors according to the functional classification, including pressure sensor, gas sensor, photoelectric sensor, biosensor and temperature sensor. We provide a comprehensive analysis of the research status and constraints for the development of ZnO nanosensor in each category. Finally, the challenges and future research directions of nanosensors based on ZnO are prospected and summarized. It is of profound significance to research ZnO nanosensors in depth, which will promote the development of artificial intelligence, medical and health, as well as industrial, production.
Collapse
Affiliation(s)
- Miaoling Que
- College of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; (M.Q.); (J.S.); (L.C.); (X.S.)
| | - Chong Lin
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, China;
| | - Jiawei Sun
- College of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; (M.Q.); (J.S.); (L.C.); (X.S.)
| | - Lixiang Chen
- College of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; (M.Q.); (J.S.); (L.C.); (X.S.)
| | - Xiaohong Sun
- College of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; (M.Q.); (J.S.); (L.C.); (X.S.)
| | - Yunfei Sun
- College of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; (M.Q.); (J.S.); (L.C.); (X.S.)
| |
Collapse
|
14
|
Graphene Oxide Nanoparticles Modified Paper Electrode as a Biosensing Platform for Detection of the htrA Gene of O. tsutsugamushi. SENSORS 2021; 21:s21134366. [PMID: 34202348 PMCID: PMC8271629 DOI: 10.3390/s21134366] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 01/05/2023]
Abstract
The unique structural and electrochemical properties of graphene oxide (GO) make it an ideal material for the fabrication of biosensing devices. Therefore, in the present study, graphene oxide nanoparticles modified paper electrodes were used as a low-cost matrix for the development of an amperometric DNA sensor. The graphene oxide was synthesized using the modified hummers method and drop cast on a screen-printed paper electrode (SPPE) to enhance its electrochemical properties. Further, the GO/SPPE electrode was modified with a 5′NH2 labeled ssDNA probe specific to the htrA gene of Orientia tsutsugamushi using carbodiimide cross-linking chemistry. The synthesized GO was characterized using UV-Vis, FTIR, and XRD. The layer-by-layer modification of the paper electrode was monitored via FE-SEM, cyclic voltammetry, and electrochemical impedance spectroscopy (EIS). The sensor response after hybridization with single-stranded genomic DNA (ssGDNA) of O. tsutsugamushi was recorded using differential pulse voltammetry (DPV). Methylene blue (1 mM in PBS buffer, pH 7.2) was used as a hybridization indicator and [Fe(CN)6]−3/−4 (2.5 mM in PBS buffer, pH 7.2) as a redox probe during electrochemical measurements. The developed DNA sensor shows excellent sensitivity (1228.4 µA/cm2/ng) and LOD (20 pg/µL) for detection of O. tsutsugamushi GDNA using differential pulse voltammetry (DPV).
Collapse
|