1
|
Loureiro M, Elias A, Machado F, Bezerra M, Zimerer C, Mello R, Frizera A. Analysis of Gait Kinematics in Smart Walker-Assisted Locomotion in Immersive Virtual Reality Scenario. SENSORS (BASEL, SWITZERLAND) 2024; 24:5534. [PMID: 39275445 PMCID: PMC11398063 DOI: 10.3390/s24175534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024]
Abstract
The decline in neuromusculoskeletal capabilities of older adults can affect motor control, independence, and locomotion. Because the elderly population is increasing worldwide, assisting independent mobility and improving rehabilitation therapies has become a priority. The combination of rehabilitation robotic devices and virtual reality (VR) tools can be used in gait training to improve clinical outcomes, motivation, and treatment adherence. Nevertheless, VR tools may be associated with cybersickness and changes in gait kinematics. This paper analyzes the gait parameters of fourteen elderly participants across three experimental tasks: free walking (FW), smart walker-assisted gait (AW), and smart walker-assisted gait combined with VR assistance (VRAW). The kinematic parameters of both lower limbs were captured by a 3D wearable motion capture system. This research aims at assessing the kinematic adaptations when using a smart walker and how the integration between this robotic device and the VR tool can influence such adaptations. Additionally, cybersickness symptoms were investigated using a questionnaire for virtual rehabilitation systems after the VRAW task. The experimental data indicate significant differences between FW and both AW and VRAW. Specifically, there was an overall reduction in sagittal motion of 16%, 25%, and 38% in the hip, knee, and ankle, respectively, for both AW and VRAW compared to FW. However, no significant differences between the AW and VRAW kinematic parameters and no adverse symptoms related to VR were identified. These results indicate that VR technology can be used in walker-assisted gait rehabilitation without compromising kinematic performance and presenting potential benefits related to motivation and treatment adherence.
Collapse
Affiliation(s)
- Matheus Loureiro
- Graduate Program in Electrical Engineering, Federal University of Espírito Santo, Vitória 29075-910, ES, Brazil
| | - Arlindo Elias
- Graduate Program in Physiotherapy, Estacio de Sa University, Vitória 29092-095, ES, Brazil
| | - Fabiana Machado
- Graduate Program in Informatics, Federal University of Espírito Santo, Vitória 29075-910, ES, Brazil
| | - Marcio Bezerra
- Graduate Program in Electrical Engineering, Federal University of Espírito Santo, Vitória 29075-910, ES, Brazil
| | - Carla Zimerer
- Graduate Program in Electrical Engineering, Federal University of Espírito Santo, Vitória 29075-910, ES, Brazil
| | - Ricardo Mello
- Graduate Program in Electrical Engineering, Federal University of Espírito Santo, Vitória 29075-910, ES, Brazil
| | - Anselmo Frizera
- Graduate Program in Electrical Engineering, Federal University of Espírito Santo, Vitória 29075-910, ES, Brazil
- Graduate Program in Informatics, Federal University of Espírito Santo, Vitória 29075-910, ES, Brazil
| |
Collapse
|
2
|
Tan K, Koyama S, Sakurai H, Kanada Y, Tanabe S. Changes in Distance between a Wearable Robotic Exoskeleton User and Four-Wheeled Walker during Gait in Level and Slope Conditions: Implications for Fall Prevention Systems. Biomimetics (Basel) 2023; 8:213. [PMID: 37366808 DOI: 10.3390/biomimetics8020213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/08/2023] [Accepted: 05/20/2023] [Indexed: 06/28/2023] Open
Abstract
When walking with wearable robotic exoskeletons (WRE) in people with spinal cord injury, the distance between the user and the walker is one of the most important perspectives for ensuring safety. The purpose of this study was to clarify the distance between WRE users and four-wheeled walkers (4WW) while walking on level and sloping surfaces. To eliminate the effects of variation in neurological conditions, 12 healthy subjects participated. All participants ambulated using the WRE and the 4WW on level and sloping surfaces. The outcomes were the mean distances between the WRE users and the 4WWs in the level and slope conditions. To examine the influence of uphill and downhill slopes on distance, comparisons were conducted between the uphill or downhill conditions and the respective transitional periods. In the uphill condition, the mean distances were significantly greater than that in the level condition. Conversely, the mean distance moving downhill was significantly shorter than that in the level condition. Changes in the distance between the WRE user and the 4WW might increase the risk of falling forward on an uphill slope and backward on a downhill slope. This study's results will assist in developing a new feedback system to prevent falls.
Collapse
Affiliation(s)
- Koki Tan
- Graduate School of Health Sciences, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Soichiro Koyama
- Graduate School of Health Sciences, Fujita Health University, Toyoake 470-1192, Aichi, Japan
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Hiroaki Sakurai
- Graduate School of Health Sciences, Fujita Health University, Toyoake 470-1192, Aichi, Japan
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Yoshikiyo Kanada
- Graduate School of Health Sciences, Fujita Health University, Toyoake 470-1192, Aichi, Japan
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Shigeo Tanabe
- Graduate School of Health Sciences, Fujita Health University, Toyoake 470-1192, Aichi, Japan
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| |
Collapse
|
3
|
Sierra M SD, Garcia A DE, Otálora S, Arias-Castro MC, Gómez-Rodas A, Múnera M, Cifuentes CA. Assessment of a Robotic Walker in Older Adults With Parkinson's Disease in Daily Living Activities. Front Neurorobot 2022; 15:742281. [PMID: 34970132 PMCID: PMC8712754 DOI: 10.3389/fnbot.2021.742281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/09/2021] [Indexed: 11/23/2022] Open
Abstract
The constant growth of the population with mobility impairments, such as older adults and people suffering from neurological pathologies like Parkinson's disease (PD), has encouraged the development of multiple devices for gait assistance. Robotic walkers have emerged, improving physical stability and balance and providing cognitive aid in rehabilitation scenarios. Different studies evaluated human gait behavior with passive and active walkers to understand such rehabilitation processes. However, there is no evidence in the literature of studies with robotic walkers in daily living scenarios with older adults with Parkinson's disease. This study presents the assessment of the AGoRA Smart Walker using Ramps Tests and Timed Up and Go Test (TUGT). Ten older adults participated in the study, four had PD, and the remaining six had underlying conditions and fractures. Each of them underwent a physical assessment (i.e., Senior Fitness, hip, and knee strength tests) and then interacted with the AGoRA SW. Kinematic and physical interaction data were collected through the AGoRA walker's sensory interface. It was found that for lower limb strength tests, older adults with PD had increases of at least 15% in all parameters assessed. For the Sit to Stand Test, the Parkinson's group evidenced an increase of 23%, while for the Chair Sit and Reach Test (CSRT), this same group was only 0.04 m away from reaching the target. For the Ramp Up Test (RUT), the subjects had to make a greater effort, and significant differences (p-value = 0.04) were evidenced in the force they applied to the device. For the Ramp Down Test (RDT), the Parkinson's group exhibited a decrease in torque, and there were statistically significant differences (p-value = 0.01) due to the increase in the complexity of the task. In the Timed Up and Go Test (TUGT), the subjects presented significant differences in torque (p-value of 0.05) but not in force (p-value of 0.22) due to the effect of the admittance controller implemented in the study. Finally, the results suggested that the walker, represents a valuable tool for assisting people with gait motor deficits in tasks that demanded more physical effort adapting its behavior to the specific needs of each user.
Collapse
Affiliation(s)
- Sergio D Sierra M
- Department of Biomedical Engineering, Colombian School of Engineering Julio Garavito, Bogotá, Colombia
| | - Daniel E Garcia A
- Department of Biomedical Engineering, Colombian School of Engineering Julio Garavito, Bogotá, Colombia
| | - Sophia Otálora
- Department of Biomedical Engineering, Colombian School of Engineering Julio Garavito, Bogotá, Colombia
| | | | - Alejandro Gómez-Rodas
- Programa de Fisioterapia, Fundación Universitaria del Área Andina, Pereira, Colombia.,Programa Ciencias del Deporte y la Recreación, Universidad Tecnológica de Pereira, Pereira, Colombia
| | - Marcela Múnera
- Department of Biomedical Engineering, Colombian School of Engineering Julio Garavito, Bogotá, Colombia
| | - Carlos A Cifuentes
- Department of Biomedical Engineering, Colombian School of Engineering Julio Garavito, Bogotá, Colombia
| |
Collapse
|
4
|
Overview and Exploitation of Haptic Tele-Weight Device in Virtual Shopping Stores. SUSTAINABILITY 2021. [DOI: 10.3390/su13137253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In view of the problem of e-commerce scams and the absence of haptic interaction, this research aims to introduce and create a tele-weight device for e-commerce shopping in smart cities. The objective is to use the proposed prototype to provide a brief overview of the possible technological advancements. When the tele-weight device is affixed over the head-mounted display, it allows the user to feel the item’s weight while shopping in the virtual store. Addressing the problem of having no physical interaction between the user (player) and a series game scene in virtual reality (VR) headsets, this research approach focuses on creating a prototype device that has two parts, a sending part and a receiving part. The sending part measures the weight of the object and transmits it over the cellular network to the receiver side. The virtual store user at the receiving side can thus realize the weight of the ordered object. The findings from this work include a visual display of the item’s weight to the virtual store e-commerce user. By introducing sustainability, this haptic technology-assisted technique can help the customer realize the weight of an object and thus have a better immersive experience. In the device, the load cell measures the weight of the object and amplifies it using the HX711 amplifier. However, some delay in the demonstration of the weight was observed during experimentation, and this indirectly altered the performance of the system. One set of the device is sited at the virtual store user premises while the sending end of the device is positioned at the warehouse. The sending end hardware includes an Arduino Uno device, an HX711 amplifier chip to amplify the weight from the load cell, and a cellular module (Sim900A chip-based) to transmit the weight in the form of an encoded message. The receiving end hardware includes a cellular module and an actuator involving a motor gear arrangement to demonstrate the weight of the object. Combining the fields of e-commerce, embedded systems, VR, and haptic sensing, this research can help create a more secure marketplace to attain a higher level of customer satisfaction.
Collapse
|