1
|
Liu D, Chen G, Hu C, Li H. Promising odor-based therapeutics targeting ectopic olfactory receptor proteins in cancer: A review. Int J Biol Macromol 2025; 308:142342. [PMID: 40139602 DOI: 10.1016/j.ijbiomac.2025.142342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/17/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
Cancer remains a formidable adversary in global health, necessitating the development of innovative strategies to curb the proliferation, invasion, and metastasis of cancer cells for effective treatment outcomes. Traditional cancer therapies often fall short in addressing the diverse therapeutic requirements of patients. Consequently, the exploration of novel therapeutic targets has become increasingly vital. Olfactory receptors (ORs) belonging to the G protein-coupled receptor (GPCR) subfamily, are present in non-nasal tissues and contribute to a wide range of physiological functions. ORs are specifically expressed in malignant tumors and have emerged as potential biomarkers for cancer detection. They can regulate diverse tumor biological behaviors and are involved in the development of malignant tumors, indicating that they might serve as potential targets for cancer treatment. This paper provides a comprehensive review of the ectopic expression of ORs, their functions in malignancies and odor-based therapeutics targeting ectopic olfactory receptors (EORs) in cancer, and aims to clarify their connection with cancer, providing new clues for probing the tumor biology and developing therapeutic strategies against cancer.
Collapse
Affiliation(s)
- Dongsheng Liu
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, PR China
| | - Gaojun Chen
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, PR China
| | - Changyi Hu
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, PR China
| | - Hanbing Li
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, PR China.
| |
Collapse
|
2
|
Zhao Y, Yuan C, Shi Y, Liu X, Luo L, Zhang L, Pešić M, Yao H, Li L. Drug screening approaches for small-molecule compounds in cancer-targeted therapy. J Drug Target 2025; 33:368-383. [PMID: 39575843 DOI: 10.1080/1061186x.2024.2427185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/30/2024] [Accepted: 10/27/2024] [Indexed: 02/08/2025]
Abstract
Small-molecule compounds exhibit distinct pharmacological properties and clinical effectiveness. Over the past decade, advances in covalent drug discovery have led to successful small-molecule drugs, such as EGFR, BTK, and KRAS (G12C) inhibitors, for cancer therapy. Researchers are paying more attention to refining drug screening methods aiming for high throughput, fast speed, high specificity, and accuracy. Therefore, the discovery and development of small-molecule drugs has been facilitated by significantly reducing screening time and financial resources, and increasing promising lead compounds compared with traditional methods. This review aims to introduce classical and emerging methods for screening small-molecule compounds in targeted cancer therapy. It includes classification, principles, advantages, disadvantages, and successful applications, serving as valuable references for subsequent researchers.
Collapse
Affiliation(s)
- Yelin Zhao
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Biotechnology for Microbial Drugs, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chenyu Yuan
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Biotechnology for Microbial Drugs, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuchen Shi
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaohong Liu
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Xicheng District, Beijing, China
| | - Liaoxin Luo
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Li Zhang
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Biotechnology for Microbial Drugs, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Milica Pešić
- Department of Neurobiology, Institute for Biological Research, 'Siniša Stanković'- National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Hongjuan Yao
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Biotechnology for Microbial Drugs, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liang Li
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Biotechnology for Microbial Drugs, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Wang J, Zhang Q, Fan W, Shi Q, Mao J, Xie J, Chai G, Zhang C. Deciphering olfactory receptor binding mechanisms: a structural and dynamic perspective on olfactory receptors. Front Mol Biosci 2025; 11:1498796. [PMID: 39845900 PMCID: PMC11751049 DOI: 10.3389/fmolb.2024.1498796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/23/2024] [Indexed: 01/24/2025] Open
Abstract
Olfactory receptors, classified as G-protein coupled receptors (GPCRs), have been a subject of scientific inquiry since the early 1950s. Historically, investigations into the sensory mechanisms of olfactory receptors were often confined to behavioral characteristics in model organisms or the expression of related proteins and genes. However, with the development of cryo-electron microscopy techniques, it has gradually become possible to decipher the specific structures of olfactory receptors in insects and humans. This has provided new insights into the binding mechanisms between odor molecules and olfactory receptors. Furthermore, due to the rapid advancements in related fields such as computer simulations, the prediction and exploration of odor molecule binding to olfactory receptors have been progressively achieved through molecular dynamics simulations. Through this comprehensive review, we aim to provide a thorough analysis of research related to the binding mechanisms between odor molecules and olfactory receptors from the perspectives of structural biology and molecular dynamics simulations. Finally, we will provide an outlook on the future of research in the field of olfactory receptor sensory mechanisms.
Collapse
Affiliation(s)
- Jingtao Wang
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan, China
- Department of tobacco flavor, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan, China
| | - Qidong Zhang
- Department of tobacco flavor, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan, China
| | - Wu Fan
- Department of tobacco flavor, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan, China
| | - Qingzhao Shi
- Department of tobacco flavor, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan, China
| | - Jian Mao
- Department of tobacco flavor, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan, China
| | - Jianping Xie
- Department of tobacco flavor, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan, China
| | - Guobi Chai
- Department of tobacco flavor, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan, China
- Food Laboratory of Zhongyuan, Flavour Science Research Center of Zhengzhou University, Zhengzhou, Henan, China
| | - Chenglei Zhang
- Medical Laboratory, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
4
|
Choi YR, Na HJ, Lee JA, Kim Y, Kim YS, Kim MJ. Discovery of (-)-epigallocatechin gallate, a novel olfactory receptor 2AT4 agonist that regulates proliferation and apoptosis in leukemia cells. Heliyon 2024; 10:e30298. [PMID: 38778941 PMCID: PMC11108860 DOI: 10.1016/j.heliyon.2024.e30298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Olfactory receptors (ORs), the largest family of G protein-coupled receptors (GPCRs), are ectopically expressed in cancer cells and are involved in cellular physiological processes, but their function as anticancer targets is still potential. OR2AT4 is expressed in leukemia cells, influencing the proliferation and apoptosis, yet the limited number of known OR2AT4 agonists makes it challenging to fully generalize the receptor's function. In this study, we aimed to identify new ligands for OR2AT4 and to investigate their functions and mechanisms in K562 leukemia cells. After producing the recombinant OR2AT4 protein, immobilizing it on a surface plasmon resonance chip, and conducting screening to confirm binding activity using 258 chemicals, five novel OR2AT4 ligands were discovered. As a result of examining changes in intracellular calcium by five ligands in OR2AT4-expressing cells and K562 cells, (-)-epigallocatechin gallate (EGCG) was identified as an OR2AT4 agonist in both cells. EGCG reduced the viability of K562 cells and induced apoptosis in K562 cells. EGCG increased the expression of cleaved caspase 3/8 and had no effect on the expression of Bax and Bcl-2, indicating that it induced apoptosis through the extrinsic pathway. Additionally, the initiation of the extrinsic apoptosis pathway in EGCG-induced K562 cells was due to the activation of OR2AT4, using an OR2AT4 antagonist. This study highlights the potential of EGCG as an anti-cancer agent against leukemia and OR2AT4 as a target, making it a new anti-cancer drug.
Collapse
Affiliation(s)
- Yae Rim Choi
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
- Department of Food Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hyun-Jin Na
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Jin-Ah Lee
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Yiseul Kim
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Young-Suk Kim
- Department of Food Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Min Jung Kim
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| |
Collapse
|
5
|
Das S, Singh S, Chawla V, Chawla PA, Bhatia R. Surface plasmon resonance as a fascinating approach in target-based drug discovery and development. Trends Analyt Chem 2024; 171:117501. [DOI: 10.1016/j.trac.2023.117501] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Yu IS, Choi YR, Choi J, Kim MK, Jung CH, Um MY, Kim MJ. Discovery of Novel Stimulators of Pax7 and/or MyoD: Enhancing the Efficacy of Cultured Meat Production through Culture Media Enrichment. BIOSENSORS 2023; 14:24. [PMID: 38248401 PMCID: PMC10813534 DOI: 10.3390/bios14010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024]
Abstract
The principles of myogenesis play crucial roles in the production of cultured meat, and identifying protein stimulators associated with myogenesis holds great potential to enhance the efficiency of this process. In this study, we used surface plasmon resonance (SPR)-based screening of a natural product library to discover ligands for Pax7 and MyoD, key regulators of satellite cells (SCs), and performed cell-based assays on Hanwoo SCs (HWSCs) to identify substances that promote cell proliferation and/or differentiation. Through an SPR analysis, we found that six chemicals, including one Pax7+/MyoD- chemical, four Pax7+/MyoD+ chemicals, and one Pax7-/MyoD+ chemical, bound to Pax7 and/or MyoD proteins. Among four Pax7+/MyoD+ chemicals, parthenolide (0.5 and 1 µM) and rutin (100 and 200 µM) stimulated cell proliferation in the medium with 10% FBS similar to the medium with 20% FBS, without affecting differentiation. Adenosine, a Pax7-/MyoD+ chemical, accelerated differentiation. These chemicals could be potential additives to reduce the reliance of FBS required for HWSC proliferation and differentiation in cultured meat production.
Collapse
Affiliation(s)
- In-Sun Yu
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (I.-S.Y.); (Y.R.C.); (C.H.J.); (M.Y.U.)
- Department of Food Science and Human Nutrition and K-Food Research Center, Jeonbuk National University, Jeonju-si 54896, Republic of Korea;
| | - Yae Rim Choi
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (I.-S.Y.); (Y.R.C.); (C.H.J.); (M.Y.U.)
- Department of Food Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jungseok Choi
- Department of Animal Science, Chungbuk National University, Cheongju-si 28644, Republic of Korea;
| | - Mina K. Kim
- Department of Food Science and Human Nutrition and K-Food Research Center, Jeonbuk National University, Jeonju-si 54896, Republic of Korea;
| | - Chang Hwa Jung
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (I.-S.Y.); (Y.R.C.); (C.H.J.); (M.Y.U.)
| | - Min Young Um
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (I.-S.Y.); (Y.R.C.); (C.H.J.); (M.Y.U.)
| | - Min Jung Kim
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (I.-S.Y.); (Y.R.C.); (C.H.J.); (M.Y.U.)
| |
Collapse
|
7
|
Deng H, Nakamoto T. Biosensors for Odor Detection: A Review. BIOSENSORS 2023; 13:1000. [PMID: 38131760 PMCID: PMC10741685 DOI: 10.3390/bios13121000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023]
Abstract
Animals can easily detect hundreds of thousands of odors in the environment with high sensitivity and selectivity. With the progress of biological olfactory research, scientists have extracted multiple biomaterials and integrated them with different transducers thus generating numerous biosensors. Those biosensors inherit the sensing ability of living organisms and present excellent detection performance. In this paper, we mainly introduce odor biosensors based on substances from animal olfactory systems. Several instances of organ/tissue-based, cell-based, and protein-based biosensors are described and compared. Furthermore, we list some other biological materials such as peptide, nanovesicle, enzyme, and aptamer that are also utilized in odor biosensors. In addition, we illustrate the further developments of odor biosensors.
Collapse
Affiliation(s)
| | - Takamichi Nakamoto
- Laboratory for Future Interdisciplinary Research of Science and Technology, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori, Yokohama 226-8503, Kanagawa, Japan;
| |
Collapse
|
8
|
Deng Y, Zhang Y, Zhou M, Wu B, Zhou J. Application of Biosensors in Detecting Breast Cancer Metastasis. SENSORS (BASEL, SWITZERLAND) 2023; 23:8813. [PMID: 37960513 PMCID: PMC10649164 DOI: 10.3390/s23218813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/19/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023]
Abstract
Breast cancer has garnered global attention due to its high incidence worldwide, and even more noteworthy is that approximately 90% deaths due to breast cancer are attributed to cancer metastasis. Therefore, the early diagnosis of breast cancer metastasis holds significant importance for reducing mortality outcomes. Biosensors play a crucial role in the early detection of metastatic breast cancer due to their advantages, such as ease of use, portability, and real-time analysis capabilities. This review primarily described various types of sensors for detecting breast cancer metastasis based on biomarkers and cell characteristics, including electrochemical, optical, and microfluidic chips. We offered detailed descriptions of the performance of these various biosensors and made comparisons between them. Furthermore, we described the pathology of breast cancer and summarized commonly used biomarkers for metastatic breast cancer. Finally, we discussed the advantages of current-stage biosensors and the challenges that need to be addressed, as well as prospects for their future development.
Collapse
Affiliation(s)
- Yu Deng
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yubi Zhang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Meng Zhou
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bin Wu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jing Zhou
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Breast and Thyroid Surgery, People’s Hospital of Dongxihu District Wuhan City and Union Dongxihu Hospital, Huazhong University of Science and Technology, Wuhan 430040, China
| |
Collapse
|
9
|
Park H, Imoto S, Miyano S. Comprehensive information-based differential gene regulatory networks analysis (CIdrgn): Application to gastric cancer and chemotherapy-responsive gene network identification. PLoS One 2023; 18:e0286044. [PMID: 37610997 PMCID: PMC10446197 DOI: 10.1371/journal.pone.0286044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/07/2023] [Indexed: 08/25/2023] Open
Abstract
Biological condition-responsive gene network analysis has attracted considerable research attention because of its ability to identify pathways or gene modules involved in the underlying mechanisms of diseases. Although many condition-specific gene network identification methods have been developed, they are based on partial or incomplete gene regulatory network information, with most studies only considering the differential expression levels or correlations among genes. However, a single gene-based analysis cannot effectively identify the molecular interactions involved in the mechanisms underlying diseases, which reflect perturbations in specific molecular network functions rather than disorders of a single gene. To comprehensively identify differentially regulated gene networks, we propose a novel computational strategy called comprehensive analysis of differential gene regulatory networks (CIdrgn). Our strategy incorporates comprehensive information on the networks between genes, including the expression levels, edge structures and regulatory effects, to measure the dissimilarity among networks. We extended the proposed CIdrgn to cell line characteristic-specific gene network analysis. Monte Carlo simulations showed the effectiveness of CIdrgn for identifying differentially regulated gene networks with different network structures and scales. Moreover, condition-responsive network identification in cell line characteristic-specific gene network analyses was verified. We applied CIdrgn to identify gastric cancer and itsf chemotherapy (capecitabine and oxaliplatin) -responsive network based on the Cancer Dependency Map. The CXC family of chemokines and cadherin gene family networks were identified as gastric cancer-specific gene regulatory networks, which was verified through a literature survey. The networks of the olfactory receptor family with the ASCL1/FOS family were identified as capecitabine- and oxaliplatin sensitive -specific gene networks. We expect that the proposed CIdrgn method will be a useful tool for identifying crucial molecular interactions involved in the specific biological conditions of cancer cell lines, such as the cancer stage or acquired anticancer drug resistance.
Collapse
Affiliation(s)
- Heewon Park
- School of Mathematics, Statistics and Data Science, Sungshin Women’s University, Seoul, Korea
| | - Seiya Imoto
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Satoru Miyano
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
- M&D Data Science Center, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
10
|
Guardia GDA, Naressi RG, Buzzato VC, da Costa JB, Zalcberg I, Ramires J, Malnic B, Gutiyama LM, Galante PAF. Acute Myeloid Leukemia Expresses a Specific Group of Olfactory Receptors. Cancers (Basel) 2023; 15:3073. [PMID: 37370684 DOI: 10.3390/cancers15123073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/23/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Acute myeloid leukemia (AML) is the most common form of acute leukemia in adults, with a 5-year overall survival rate of approximately 30%. Despite recent advances in therapeutic options, relapse remains the leading cause of death and poor survival outcomes. New drugs benefit specific small subgroups of patients with actionable therapeutic targets. Thus, finding new targets with greater applicability should be pursued. Olfactory receptors (ORs) are seven transmembrane G-protein coupled receptors preferentially expressed in sensory neurons with a critical role in recognizing odorant molecules. Recent studies have revealed ectopic expression and putative function of ORs in nonolfactory tissues and pathologies, including AML. Here, we investigated OR expression in 151 AML samples, 6400 samples of 15 other cancer types, and 11,200 samples of 51 types of healthy tissues. First, we identified 19 ORs with a distinct and major expression pattern in AML, which were experimentally validated by RT-PCR in an independent set of 13 AML samples, 13 healthy donors, and 8 leukemia cell lines. We also identified an OR signature with prognostic potential for AML patients. Finally, we found cancer-related genes coexpressed with the ORs in the AML samples. In summary, we conducted an extensive study to identify ORs that can be used as novel biomarkers for the diagnosis of AML and as potential drug targets.
Collapse
Affiliation(s)
- Gabriela D A Guardia
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo 01308-060, SP, Brazil
| | - Rafaella G Naressi
- Centro de Transplante de Medula Óssea, Instituto Nacional do Câncer, Rio de Janeiro 20230-130, RJ, Brazil
- Department of Biochemistry, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Vanessa C Buzzato
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo 01308-060, SP, Brazil
| | - Juliana B da Costa
- Centro de Transplante de Medula Óssea, Instituto Nacional do Câncer, Rio de Janeiro 20230-130, RJ, Brazil
| | - Ilana Zalcberg
- Centro de Transplante de Medula Óssea, Instituto Nacional do Câncer, Rio de Janeiro 20230-130, RJ, Brazil
| | - Jordana Ramires
- Centro de Transplante de Medula Óssea, Instituto Nacional do Câncer, Rio de Janeiro 20230-130, RJ, Brazil
| | - Bettina Malnic
- Department of Biochemistry, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Luciana M Gutiyama
- Centro de Transplante de Medula Óssea, Instituto Nacional do Câncer, Rio de Janeiro 20230-130, RJ, Brazil
| | - Pedro A F Galante
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo 01308-060, SP, Brazil
| |
Collapse
|
11
|
Abstract
Odorant receptors (ORs), the largest subfamily of G protein-coupled receptors, detect odorants in the nose. In addition, ORs were recently shown to be expressed in many nonolfactory tissues and cells, indicating that these receptors have physiological and pathophysiological roles beyond olfaction. Many ORs are expressed by tumor cells and tissues, suggesting that they may be associated with cancer progression or may be cancer biomarkers. This review describes OR expression in various types of cancer and the association of these receptors with various types of signaling mechanisms. In addition, the clinical relevance and significance of the levels of OR expression were evaluated. Namely, levels of OR expression in cancer were analyzed based on RNA-sequencing data reported in the Cancer Genome Atlas; OR expression patterns were visualized using t-distributed stochastic neighbor embedding (t-SNE); and the associations between patient survival and levels of OR expression were analyzed. These analyses of the relationships between patient survival and expression patterns obtained from an open mRNA database in cancer patients indicate that ORs may be cancer biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Chan Chung
- Department of New Biology, DGIST, Daegu 42988, Korea
- New Biology Research Center (NBRC), DGIST, Daegu 42988, Korea
| | - Hee Jin Cho
- Department of Biomedical Convergence Science and Technology, Kyungpook National University, Daegu 41566, Korea
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Korea
| | - ChaeEun Lee
- Department of New Biology, DGIST, Daegu 42988, Korea
- New Biology Research Center (NBRC), DGIST, Daegu 42988, Korea
| | - JaeHyung Koo
- Department of New Biology, DGIST, Daegu 42988, Korea
- New Biology Research Center (NBRC), DGIST, Daegu 42988, Korea
- Korea Brain Research Institute (KBRI), Daegu 41062, Korea
| |
Collapse
|
12
|
Chung C, Cho HJ, Lee C, Koo J. Odorant receptors in cancer. BMB Rep 2022; 55:72-80. [PMID: 35168702 PMCID: PMC8891625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 02/21/2025] Open
Abstract
Odorant receptors (ORs), the largest subfamily of G protein-coupled receptors, detect odorants in the nose. In addition, ORs were recently shown to be expressed in many nonolfactory tissues and cells, indicating that these receptors have physiological and pathophysiological roles beyond olfaction. Many ORs are expressed by tumor cells and tissues, suggesting that they may be associated with cancer progression or may be cancer biomarkers. This review describes OR expression in various types of cancer and the association of these receptors with various types of signaling mechanisms. In addition, the clinical relevance and significance of the levels of OR expression were evaluated. Namely, levels of OR expression in cancer were analyzed based on RNA-sequencing data reported in the Cancer Genome Atlas; OR expression patterns were visualized using t-distributed stochastic neighbor embedding (t-SNE); and the associations between patient survival and levels of OR expression were analyzed. These analyses of the relationships between patient survival and expression patterns obtained from an open mRNA database in cancer patients indicate that ORs may be cancer biomarkers and therapeutic targets. [BMB Reports 2022;55(2): 72-80].
Collapse
Affiliation(s)
- Chan Chung
- Department of New Biology, DGIST, Daegu 42988, Korea
- New Biology Research Center (NBRC), DGIST, Daegu 42988, Korea
| | - Hee Jin Cho
- Department of Biomedical Convergence Science and Technology, Kyungpook National University, Daegu 41566, Korea
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Korea
| | - ChaeEun Lee
- Department of New Biology, DGIST, Daegu 42988, Korea
- New Biology Research Center (NBRC), DGIST, Daegu 42988, Korea
| | - JaeHyung Koo
- Department of New Biology, DGIST, Daegu 42988, Korea
- New Biology Research Center (NBRC), DGIST, Daegu 42988, Korea
- Korea Brain Research Institute (KBRI), Daegu 41062, Korea
| |
Collapse
|
13
|
Jabeen A, de March CA, Matsunami H, Ranganathan S. Machine Learning Assisted Approach for Finding Novel High Activity Agonists of Human Ectopic Olfactory Receptors. Int J Mol Sci 2021; 22:ijms222111546. [PMID: 34768977 PMCID: PMC8583936 DOI: 10.3390/ijms222111546] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/29/2022] Open
Abstract
Olfactory receptors (ORs) constitute the largest superfamily of G protein-coupled receptors (GPCRs). ORs are involved in sensing odorants as well as in other ectopic roles in non-nasal tissues. Matching of an enormous number of the olfactory stimulation repertoire to its counterpart OR through machine learning (ML) will enable understanding of olfactory system, receptor characterization, and exploitation of their therapeutic potential. In the current study, we have selected two broadly tuned ectopic human OR proteins, OR1A1 and OR2W1, for expanding their known chemical space by using molecular descriptors. We present a scheme for selecting the optimal features required to train an ML-based model, based on which we selected the random forest (RF) as the best performer. High activity agonist prediction involved screening five databases comprising ~23 M compounds, using the trained RF classifier. To evaluate the effectiveness of the machine learning based virtual screening and check receptor binding site compatibility, we used docking of the top target ligands to carefully develop receptor model structures. Finally, experimental validation of selected compounds with significant docking scores through in vitro assays revealed two high activity novel agonists for OR1A1 and one for OR2W1.
Collapse
Affiliation(s)
- Amara Jabeen
- Applied BioSciences, Macquarie University, Sydney, NSW 2109, Australia;
| | - Claire A. de March
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA;
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA;
- Department of Neurobiology, Duke Institute for Brain Sciences, Duke University, Durham, NC 27710, USA
- Correspondence: (H.M.); (S.R.)
| | - Shoba Ranganathan
- Applied BioSciences, Macquarie University, Sydney, NSW 2109, Australia;
- Correspondence: (H.M.); (S.R.)
| |
Collapse
|