1
|
Pecoraro PM, Marsili L, Espay AJ, Bologna M, di Biase L. Computer Vision Technologies in Movement Disorders: A Systematic Review. Mov Disord Clin Pract 2025. [PMID: 40326633 DOI: 10.1002/mdc3.70123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 04/01/2025] [Accepted: 04/19/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND Evaluation of movement disorders primarily relies on phenomenology. Despite refinements in diagnostic criteria, the accuracy remains suboptimal. Such a gap may be bridged by machine learning and video technology, which permit objective, quantitative, non-invasive motor analysis. Markerless automated video-analysis, namely Computer Vision, emerged as best suited for ecologically-valid assessment. OBJECTIVES To systematically review the application of Computer Vision for assessment, diagnosis, and monitoring of movement disorders. METHODS Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, we searched Cochrane, Embase, PubMed, and Scopus databases for articles published between 1984 and September 2024. We used the following search strategy: ("video analysis" OR "computer vision") AND ("Parkinson's disease" OR "PD" OR "tremor" OR "dystonia" OR "parkinsonism" OR "progressive supranuclear palsy" OR "PSP" OR "multiple system atrophy" OR "MSA" OR "corticobasal syndrome" OR "CBS" OR "chorea" OR "ballism" OR "myoclonus" OR "Tourette's syndrome"). RESULTS Out of 1099 identified studies, 61 met inclusion criteria, and 10 additional studies were included based on authors' judgment. Parkinson's disease was the most investigated movement disorder, with gait as the prevalent motor task. OpenPose was the most used pose estimation software. Automated video-analysis consistently achieved diagnostic accuracies exceeding 80% across most movement disorders. For tremor, dystonia severity and tic detection, Computer Vision strongly aligned with accelerometery and clinical assessments. CONCLUSIONS Computer Vision holds potential to provide non-invasive quantification of presence and severity of movement disorders. Heterogeneity in video settings, software usage, and definition of standardized guidelines for videorecording are challenges to be addressed for real-word applications.
Collapse
Affiliation(s)
- Pasquale Maria Pecoraro
- Operative Research Unit of Neurology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Research Unit of Neurology, Neurophysiology and Neurobiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Luca Marsili
- James J. and Joan A. Gardner Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Alberto J Espay
- James J. and Joan A. Gardner Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Matteo Bologna
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Lazzaro di Biase
- Operative Research Unit of Neurology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Research Unit of Neurology, Neurophysiology and Neurobiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
- Brain Innovations Lab, Università Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
2
|
Lim WS, Fan SP, Chiu SI, Wu MC, Wang PH, Lin KP, Chen YM, Peng PL, Jang JSR, Lin CH. Smartphone-derived multidomain features including voice, finger-tapping movement and gait aid early identification of Parkinson's disease. NPJ Parkinsons Dis 2025; 11:111. [PMID: 40325040 PMCID: PMC12052972 DOI: 10.1038/s41531-025-00953-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 04/08/2025] [Indexed: 05/07/2025] Open
Abstract
Smart devices can easily capture changes in voice, movements, and gait in people with Parkinson's disease (PD). We investigated whether smartphone-derived multimodal features combined with machine learning algorithms can aid in early PD identification. We recruited 496 participants, split into a training cohort (127 PD patients during "on" phase and 198 age-matched controls) and a test dataset (86 patients during "off" phase and 85 age-matched controls). Multidomain features from smartphone recordings were analyzed using machine learning classifiers with integration of a hyperparameter grid. Single-modality models for voice, hand movements, and gait showed diagnostic values of 0.88, 0.74, and 0.81, respectively, with test dataset values of 0.80, 0.74, and 0.76. An integrated multimodal model using a support vector machine improved performance to 0.86 and achieved 0.82 for identifying early-stage PD during the "off" phase. A smartphone-based integrated multimodality model combining voice, hand movement, and gait shows promise for early PD identification.
Collapse
Affiliation(s)
- Wee-Shin Lim
- Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan
| | - Sung-Pin Fan
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Shu-I Chiu
- Department of Computer Science, National Chengchi University, Taipei, Taiwan
| | - Meng-Ciao Wu
- Department of Electronic Engineering, National Taiwan University, Taipei, Taiwan
| | - Pu-He Wang
- Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan
| | - Kun-Pei Lin
- Department of Geriatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yung-Ming Chen
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pei-Ling Peng
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Jyh-Shing Roger Jang
- Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan
| | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
3
|
Tang W, van Ooijen PMA, Sival DA, Maurits NM. Automatic two-dimensional & three-dimensional video analysis with deep learning for movement disorders: A systematic review. Artif Intell Med 2024; 156:102952. [PMID: 39180925 DOI: 10.1016/j.artmed.2024.102952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/19/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024]
Abstract
The advent of computer vision technology and increased usage of video cameras in clinical settings have facilitated advancements in movement disorder analysis. This review investigated these advancements in terms of providing practical, low-cost solutions for the diagnosis and analysis of movement disorders, such as Parkinson's disease, ataxia, dyskinesia, and Tourette syndrome. Traditional diagnostic methods for movement disorders are typically reliant on the subjective assessment of motor symptoms, which poses inherent challenges. Furthermore, early symptoms are often overlooked, and overlapping symptoms across diseases can complicate early diagnosis. Consequently, deep learning has been used for the objective video-based analysis of movement disorders. This study systematically reviewed the latest advancements in automatic two-dimensional & three-dimensional video analysis using deep learning for movement disorders. We comprehensively analyzed the literature published until September 2023 by searching the Web of Science, PubMed, Scopus, and Embase databases. We identified 68 relevant studies and extracted information on their objectives, datasets, modalities, and methodologies. The study aimed to identify, catalogue, and present the most significant advancements, offering a consolidated knowledge base on the role of video analysis and deep learning in movement disorder analysis. First, the objectives, including specific PD symptom quantification, ataxia assessment, cerebral palsy assessment, gait disorder analysis, tremor assessment, tic detection (in the context of Tourette syndrome), dystonia assessment, and abnormal movement recognition were discussed. Thereafter, the datasets used in the study were examined. Subsequently, video modalities and deep learning methodologies related to the topic were investigated. Finally, the challenges and opportunities in terms of datasets, interpretability, evaluation methods, and home/remote monitoring were discussed.
Collapse
Affiliation(s)
- Wei Tang
- Department of Neurology, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands; Data Science Center in Health, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands.
| | - Peter M A van Ooijen
- Data Science Center in Health, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands
| | - Deborah A Sival
- Department of Pediatric Neurology, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands
| | - Natasha M Maurits
- Department of Neurology, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands
| |
Collapse
|
4
|
Morgan C, Tonkin EL, Masullo A, Jovan F, Sikdar A, Khaire P, Mirmehdi M, McConville R, Tourte GJL, Whone A, Craddock I. A multimodal dataset of real world mobility activities in Parkinson's disease. Sci Data 2023; 10:918. [PMID: 38123584 PMCID: PMC10733419 DOI: 10.1038/s41597-023-02663-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/19/2023] [Indexed: 12/23/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterised by motor symptoms such as gait dysfunction and postural instability. Technological tools to continuously monitor outcomes could capture the hour-by-hour symptom fluctuations of PD. Development of such tools is hampered by the lack of labelled datasets from home settings. To this end, we propose REMAP (REal-world Mobility Activities in Parkinson's disease), a human rater-labelled dataset collected in a home-like setting. It includes people with and without PD doing sit-to-stand transitions and turns in gait. These discrete activities are captured from periods of free-living (unobserved, unstructured) and during clinical assessments. The PD participants withheld their dopaminergic medications for a time (causing increased symptoms), so their activities are labelled as being "on" or "off" medications. Accelerometry from wrist-worn wearables and skeleton pose video data is included. We present an open dataset, where the data is coarsened to reduce re-identifiability, and a controlled dataset available on application which contains more refined data. A use-case for the data to estimate sit-to-stand speed and duration is illustrated.
Collapse
Affiliation(s)
- Catherine Morgan
- Movement Disorders Group, Bristol Brain Centre, North Bristol NHS Trust, Southmead Hospital, Southmead Road, Bristol, BS10 5NB, UK
- Translational Health Sciences, University of Bristol, 5 Tyndall Ave, Bristol, BS8 1UD, UK
| | - Emma L Tonkin
- Faculty of Engineering, University of Bristol, Digital Health Offices, 1 Cathedral Square, Bristol, BS1 5DD, UK.
| | - Alessandro Masullo
- Faculty of Engineering, University of Bristol, Digital Health Offices, 1 Cathedral Square, Bristol, BS1 5DD, UK
| | - Ferdian Jovan
- Faculty of Engineering, University of Bristol, Digital Health Offices, 1 Cathedral Square, Bristol, BS1 5DD, UK
- School of Natural and Computing Sciences, University of Aberdeen, Aberdeen, UK
| | - Arindam Sikdar
- Faculty of Engineering, University of Bristol, Digital Health Offices, 1 Cathedral Square, Bristol, BS1 5DD, UK
- Edge Hill University, Ormskirk, UK
| | - Pushpajit Khaire
- Faculty of Engineering, University of Bristol, Digital Health Offices, 1 Cathedral Square, Bristol, BS1 5DD, UK
- Datta Meghe Institute of Higher Education and Research, Wardha, India
| | - Majid Mirmehdi
- Faculty of Engineering, University of Bristol, Digital Health Offices, 1 Cathedral Square, Bristol, BS1 5DD, UK
| | - Ryan McConville
- Faculty of Engineering, University of Bristol, Digital Health Offices, 1 Cathedral Square, Bristol, BS1 5DD, UK
| | - Gregory J L Tourte
- Faculty of Engineering, University of Bristol, Digital Health Offices, 1 Cathedral Square, Bristol, BS1 5DD, UK
- Advanced Research Computing, University of Oxford, Oxford, UK
| | - Alan Whone
- Movement Disorders Group, Bristol Brain Centre, North Bristol NHS Trust, Southmead Hospital, Southmead Road, Bristol, BS10 5NB, UK
- Translational Health Sciences, University of Bristol, 5 Tyndall Ave, Bristol, BS8 1UD, UK
| | - Ian Craddock
- Faculty of Engineering, University of Bristol, Digital Health Offices, 1 Cathedral Square, Bristol, BS1 5DD, UK
| |
Collapse
|
5
|
Parkinson’s disease diagnosis using neural networks: Survey and comprehensive evaluation. Inf Process Manag 2022. [DOI: 10.1016/j.ipm.2022.102909] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Giannakopoulou KM, Roussaki I, Demestichas K. Internet of Things Technologies and Machine Learning Methods for Parkinson's Disease Diagnosis, Monitoring and Management: A Systematic Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:1799. [PMID: 35270944 PMCID: PMC8915040 DOI: 10.3390/s22051799] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 12/15/2022]
Abstract
Parkinson's disease is a chronic neurodegenerative disease that affects a large portion of the population, especially the elderly. It manifests with motor, cognitive and other types of symptoms, decreasing significantly the patients' quality of life. The recent advances in the Internet of Things and Artificial Intelligence fields, including the subdomains of machine learning and deep learning, can support Parkinson's disease patients, their caregivers and clinicians at every stage of the disease, maximizing the treatment effectiveness and minimizing the respective healthcare costs at the same time. In this review, the considered studies propose machine learning models, trained on data acquired via smart devices, wearable or non-wearable sensors and other Internet of Things technologies, to provide predictions or estimations regarding Parkinson's disease aspects. Seven hundred and seventy studies have been retrieved from three dominant academic literature databases. Finally, one hundred and twelve of them have been selected in a systematic way and have been considered in the state-of-the-art systematic review presented in this paper. These studies propose various methods, applied on various sensory data to address different Parkinson's disease-related problems. The most widely deployed sensors, the most commonly addressed problems and the best performing algorithms are highlighted. Finally, some challenges are summarized along with some future considerations and opportunities that arise.
Collapse
Affiliation(s)
- Konstantina-Maria Giannakopoulou
- School of Electrical and Computer Engineering, National Technical University of Athens, 15773 Athens, Greece; (K.-M.G.); (K.D.)
- Institute of Communication and Computer Systems, 10682 Athens, Greece
| | - Ioanna Roussaki
- School of Electrical and Computer Engineering, National Technical University of Athens, 15773 Athens, Greece; (K.-M.G.); (K.D.)
- Institute of Communication and Computer Systems, 10682 Athens, Greece
| | - Konstantinos Demestichas
- School of Electrical and Computer Engineering, National Technical University of Athens, 15773 Athens, Greece; (K.-M.G.); (K.D.)
- Institute of Communication and Computer Systems, 10682 Athens, Greece
| |
Collapse
|
7
|
Morgan C, Tonkin EL, Craddock I, Whone AL. Acceptability of an In-Home Multimodal Sensor Platform in Parkinson’s Disease: A Qualitative Study (Preprint). JMIR Hum Factors 2022; 9:e36370. [PMID: 35797101 PMCID: PMC9305404 DOI: 10.2196/36370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/07/2022] [Accepted: 05/23/2022] [Indexed: 12/28/2022] Open
Abstract
Background Parkinson disease (PD) symptoms are complex, gradually progressive, and fluctuate hour by hour. Home-based technological sensors are being investigated to measure symptoms and track disease progression. A smart home sensor platform, with cameras and wearable devices, could be a useful tool to use to get a fuller picture of what someone’s symptoms are like. High-resolution video can capture the ground truth of symptoms and activities. There is a paucity of information about the acceptability of such sensors in PD. Objective The primary objective of our study was to explore the acceptability of living with a multimodal sensor platform in a naturalistic setting in PD. Two subobjectives are to identify any suggested limitations and to explore the sensors’ impact on participant behaviors. Methods A qualitative study was conducted with an inductive approach using semistructured interviews with a cohort of PD and control participants who lived freely for several days in a home-like environment while continuously being sensed. Results This study of 24 participants (12 with PD) found that it is broadly acceptable to use multimodal sensors including wrist-worn wearables, cameras, and other ambient sensors passively in free-living in PD. The sensor that was found to be the least acceptable was the wearable device. Suggested limitations on the platform for home deployment included camera-free time and space. Behavior changes were noted by the study participants, which may have related to being passively sensed. Recording high-resolution video in the home setting for limited periods of time was felt to be acceptable to all participants. Conclusions The results broaden the knowledge of what types of sensors are acceptable for use in research in PD and what potential limitations on these sensors should be considered in future work. The participants’ reported behavior change in this study should inform future similar research design to take this factor into account. Collaborative research study design, involving people living with PD at every stage, is important to ensure that the technology is acceptable and that the data outcomes produced are ecologically valid and accurate. International Registered Report Identifier (IRRID) RR2-10.1136/bmjopen-2020-041303
Collapse
Affiliation(s)
- Catherine Morgan
- Translational Health Sciences, University of Bristol Medical School, Bristol, United Kingdom
- Movement Disorders Group, Bristol Brain Centre, North Bristol NHS Trust, Bristol, United Kingdom
| | - Emma L Tonkin
- School of Computer Science, Electrical and Electronic Engineering, University of Bristol, Bristol, United Kingdom
| | - Ian Craddock
- School of Computer Science, Electrical and Electronic Engineering, University of Bristol, Bristol, United Kingdom
| | - Alan L Whone
- Translational Health Sciences, University of Bristol Medical School, Bristol, United Kingdom
- Movement Disorders Group, Bristol Brain Centre, North Bristol NHS Trust, Bristol, United Kingdom
| |
Collapse
|
8
|
Krokidis MG, Dimitrakopoulos GN, Vrahatis AG, Tzouvelekis C, Drakoulis D, Papavassileiou F, Exarchos TP, Vlamos P. A Sensor-Based Perspective in Early-Stage Parkinson's Disease: Current State and the Need for Machine Learning Processes. SENSORS (BASEL, SWITZERLAND) 2022; 22:409. [PMID: 35062370 PMCID: PMC8777583 DOI: 10.3390/s22020409] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/02/2021] [Accepted: 01/04/2022] [Indexed: 02/04/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder associated with dysfunction of dopaminergic neurons in the brain, lack of dopamine and the formation of abnormal Lewy body protein particles. PD is an idiopathic disease of the nervous system, characterized by motor and nonmotor manifestations without a discrete onset of symptoms until a substantial loss of neurons has already occurred, enabling early diagnosis very challenging. Sensor-based platforms have gained much attention in clinical practice screening various biological signals simultaneously and allowing researchers to quickly receive a huge number of biomarkers for diagnostic and prognostic purposes. The integration of machine learning into medical systems provides the potential for optimization of data collection, disease prediction through classification of symptoms and can strongly support data-driven clinical decisions. This work attempts to examine some of the facts and current situation of sensor-based approaches in PD diagnosis and discusses ensemble techniques using sensor-based data for developing machine learning models for personalized risk prediction. Additionally, a biosensing platform combined with clinical data processing and appropriate software is proposed in order to implement a complete diagnostic system for PD monitoring.
Collapse
Affiliation(s)
- Marios G. Krokidis
- Bioinformatics and Human Electrophysiology Laboratory, Department of Informatics, Ionian University, 49100 Corfu, Greece; (M.G.K.); (A.G.V.); (C.T.); (T.P.E.)
| | - Georgios N. Dimitrakopoulos
- Bioinformatics and Human Electrophysiology Laboratory, Department of Informatics, Ionian University, 49100 Corfu, Greece; (M.G.K.); (A.G.V.); (C.T.); (T.P.E.)
| | - Aristidis G. Vrahatis
- Bioinformatics and Human Electrophysiology Laboratory, Department of Informatics, Ionian University, 49100 Corfu, Greece; (M.G.K.); (A.G.V.); (C.T.); (T.P.E.)
| | - Christos Tzouvelekis
- Bioinformatics and Human Electrophysiology Laboratory, Department of Informatics, Ionian University, 49100 Corfu, Greece; (M.G.K.); (A.G.V.); (C.T.); (T.P.E.)
| | | | | | - Themis P. Exarchos
- Bioinformatics and Human Electrophysiology Laboratory, Department of Informatics, Ionian University, 49100 Corfu, Greece; (M.G.K.); (A.G.V.); (C.T.); (T.P.E.)
| | - Panayiotis Vlamos
- Bioinformatics and Human Electrophysiology Laboratory, Department of Informatics, Ionian University, 49100 Corfu, Greece; (M.G.K.); (A.G.V.); (C.T.); (T.P.E.)
| |
Collapse
|