1
|
Liu R, Zhang Y, Liu M, Ni Y, Yue Y, Wu S, Li S. Electrochemical sensor based on Fe3O4/α-Fe2O3@Au magnetic nanocomposites for sensitive determination of the TP53 gene. Bioelectrochemistry 2023; 152:108429. [PMID: 37023617 DOI: 10.1016/j.bioelechem.2023.108429] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/09/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
Considering the high cost and tedious process of gene sequencing, there is an urgent need to develop portable and efficient sensors for the TP53 gene. Here, we developed a novel electrochemical sensor that detected the TP53 gene using magnetic peptide nucleic acid (PNA)-modified Fe3O4/α-Fe2O3@Au nanocomposites. Cyclic voltammetry and electrochemical impedance spectroscopy confirmed the successful stepwise construction of the sensor, especially the high-affinity binding of PNA to DNA strands, which induced different electron transfer rates and resulted in current changes. Variations in the differential pulse voltammetry current observed during hybridization at different surface PNA probe densities, hybridization times, and hybridization temperatures were explored. The biosensing strategy obtained a limit of detection of 0.26 pM, a limit of quantification of 0.85 pM, and a wide linear range (1 pM-1 μM), confirming that the Fe3O4/α-Fe2O3@Au nanocomposites and the strategy based on magnetic separation and magnetically induced self-assembly improved the binding efficiency of nucleic acid molecules. The biosensor was a label-free and enzyme-free device with excellent reproducibility and stability that could identify single-base mismatched DNA without additional DNA amplification procedures, and the serum spiked experiments revealed the feasibility of the detection approach.
Collapse
|
2
|
Hu X, Zhang J, Xiang Q, Huang G, Yuan Q, Wang Y, Shen Z. Study on Sgc8 Aptamer-mediated Nucleic Acid Nanomaterial-doxorubicin Complex for Tumor Targeted Therapy. Eur J Pharm Biopharm 2023; 186:7-17. [PMID: 36858245 DOI: 10.1016/j.ejpb.2023.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 02/10/2023] [Accepted: 02/18/2023] [Indexed: 03/03/2023]
Abstract
Chemotherapy is one of the most important treatments for malignant cancers, but most chemotherapeutic drugs are poorly targeted, highly toxic and expensive, resulting in unsatisfactory treatment results for cancer patients. Therefore, intelligent drug delivery platforms are needed to be explored urgently to enhance drug treatment and reduce toxicity on normal cells. Nucleic acid nanomaterials are a class of nanomaterials developed on the basis of the "base complementary pairing principle", which have the advantages of good programmability, high stability, good biocompatibility, and strong targeting. Herein, we present a simple Sgc8 aptamer-modified nucleic acid nanomaterial (Sgc8NM) for the targeted delivery of Doxorubicin (Dox), a widely used chemotherapy drug in clinic. Studies have shown the Sgc8NM-Dox performed a precise treatment effect on target cells and low toxicity on non-target cells, providing a new strategy for the potential application of nanocomposite drugs in targeted cancer delivery.
Collapse
Affiliation(s)
- Xuemei Hu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Department of Cell Biology and Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, PR China; Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325088, P.R. China
| | - Jing Zhang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Department of Cell Biology and Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, PR China
| | - Qi Xiang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Department of Cell Biology and Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, PR China
| | - Guoqiao Huang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Department of Cell Biology and Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, PR China
| | - Quan Yuan
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Department of Cell Biology and Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, PR China
| | - Yuzhe Wang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Department of Cell Biology and Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, PR China
| | - Zhifa Shen
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Department of Cell Biology and Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, PR China.
| |
Collapse
|