1
|
Budé LMI, Vat K, Voogt IJ, Zivkovic I, Raaijmakers AJE. An evaluation of the coax monopole antenna as a transmit array element for head imaging at 14 T. Magn Reson Med 2025; 93:2667-2679. [PMID: 39963707 PMCID: PMC11971495 DOI: 10.1002/mrm.30464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 12/18/2024] [Accepted: 01/26/2025] [Indexed: 04/06/2025]
Abstract
PURPOSE In comparison to dipole antennas, the coax monopole antenna (CMA) diminishes the possibility of cable-coil coupling. This greatly facilitates cable routing in spatially restricted environments, such as head coil arrays. With the outlook of a 14T MRI system being installed at the Donders Center in Nijmegen, the Netherlands, this study aims to optimize the CMA for an eight-channel head array at 14 T and compare its performance with an array of fractionated dipole antennas. METHODS Both antenna designs were optimized for head imaging at 14 T using single-channel finite-difference time-domain (FDTD) simulations at 596 MHz. Eight-channel simulations were then used on a human model to evaluateB 1 + $$ {\mathrm{B}}_1^{+} $$ and specific absorption rate (SAR) distributions. For both antenna types, prototype arrays were built by placing eight elements on a 26-cm-diameter cylindrical holder. These prototype arrays were used for S11 and S12 evaluation. RESULTS The optimal dimensions of the CMA were a length of 20 cm and a gap position of 4 cm. The fractionated dipole was optimal for a length of 25 cm. Evaluation of 100 000 random shims revealed that the CMA performs with lower SAR efficiency, although the SAR efficiencies are similar in CP mode. Measured S11 and S12 levels were both lower for the CMA. CONCLUSION The coax monopole would be an excellent candidate for head coil arrays at 14T MRI. Although the CMA is expected to perform with lower SAR efficiency than the fractionated dipole, its single-ended design will facilitate elements placement and cable-routing, especially in a spatially restricted environment.
Collapse
Affiliation(s)
- Lyanne M. I. Budé
- Department of Electrical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
| | - Koen Vat
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
| | | | - Irena Zivkovic
- Department of Electrical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
| | - Alexander J. E. Raaijmakers
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
- Division of Imaging and OncologyUMC UtrechtUtrechtThe Netherlands
| |
Collapse
|
2
|
Haluptzok TD, Lagore RL, Schmidt S, Metzger GJ. A shielded 32-channel body transceiver array with integrated electronics for 7 T. Magn Reson Med 2025. [PMID: 40159656 DOI: 10.1002/mrm.30498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/06/2025] [Accepted: 02/21/2025] [Indexed: 04/02/2025]
Abstract
PURPOSE Develop a 32-channel transceiver array for 7 T body imaging that incorporates an RF shield, improves SNR, lowers g-factors, and is robust to external loading. METHODS The addition of a local RF shield was first investigated for single resonant blocks consisting of either one loop and a dipole (LD) or three loops and a dipole (3LD). A 32-channel array consisting of eight shielded 3LD blocks (32LD-SH) was constructed and validated for in-vivo use. The SNR, parallel imaging, and transmit performance were compared to a previously published 16-channel LD array (16LD). The effect of top loading was investigated by placing arms on top of the coils and measuring S-parameter changes. In vivo imaging of multiple anatomies was performed. RESULTS In single block experiments, the RF shield impacted SNR andB 1 + $$ {\mathrm{B}}_1^{+} $$ performance by <5%. The 3LD blocks had 80% higher peripheral SNR and 25% higher SNR at a depth of 10 cm. The 32LD-SH array had 18% lowerB 1 + $$ {B}_1^{+} $$ /W0.5 efficiency and 30% higher central SNR compared to the 16LD array and supported threefold acceleration in the foot-head direction. Arm placement had no effect on the 32LD-SH array but reduced the 16LD match to 5.4 dB. CONCLUSION A 32-channel transceiver array was developed for 7 T body imaging that is insensitive to top loading and has higher SNR and lower g-factors compared to an existing 16-channel transceiver array. Despite lower transmit performance, parallel transmit optimization permitted the 32LD-SH to achieve flip angles necessary for high-quality gradient and spin echo acquisitions of target organs in the chest, abdomen, and pelvis.
Collapse
Affiliation(s)
- Tobey D Haluptzok
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| | - Russell L Lagore
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| | - Simon Schmidt
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| | - Gregory J Metzger
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
3
|
Sun Y, Wang M, Du J, Wang W, Yang G, Wang W, Ren Q. 16-channel sleeve antenna array based on passive decoupling method at 14 T. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 369:107796. [PMID: 39577232 DOI: 10.1016/j.jmr.2024.107796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 10/31/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024]
Abstract
At ultra-high fields, especially at 14 T, head coil arrays face significant challenges with coupling between elements. Although passive decoupling methods can reduce this coupling, the decoupling elements can cause destructive interference to the RF field of the head array, thus reducing the B1+ efficiency. The B1+ loss due to this effect can be even higher than that due to inter-element coupling. In this study, we develop a novel passive decoupling method to improve the performance of head coil arrays at 14 T. Specifically, passive dipole antennas were utilized to decouple the 16-channel sleeve antenna array, with their positioning optimized to minimize destructive interference with the array's RF field by increasing their distance from the active antennas. We used electromagnetic simulations to optimize the position of the passive dipoles to obtain the best performance of the array. In addition, we introduced a 16-channel dipole antenna array to compare the array performance when evaluating the sleeve antenna array performance using a human body model. We also constructed the optimized sleeve antenna array and measured its S-parameters to verify the effectiveness of the decoupling strategy. Our results show that the improved passive decoupling method can well reduce the destructive interference of the decoupling elements to the RF field. The sleeve antenna array developed under this method exhibits higher B1+ efficiency and better transmission performance.
Collapse
Affiliation(s)
- Youheng Sun
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China.
| | - Miutian Wang
- School of Electronics, Peking University, Beijing, 100871, China.
| | - Jianjun Du
- Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Wentao Wang
- Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Gang Yang
- Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Weimin Wang
- School of Electronics, Peking University, Beijing, 100871, China; Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, 518055, China; Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| | - Qiushi Ren
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China; Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, 518055, China; National Biomedical Imaging Center, Peking University, Beijing, 100871, China.
| |
Collapse
|
4
|
Budé LMI, Steensma BR, Zivkovic I, Raaijmakers AJE. The coax monopole antenna: A flexible end-fed antenna for ultrahigh field transmit/receive arrays. Magn Reson Med 2024; 92:361-373. [PMID: 38376359 DOI: 10.1002/mrm.30036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 02/21/2024]
Abstract
PURPOSE The coax monopole antenna is presented for body imaging at 7 T. The antenna is fed at one end, eliminating the possibility of cable-coil coupling and simplifying cable routing. Additionally, its flexibility improves loading to the subject. METHODS Like the coax dipole antenna, an interruption in the shield of the coaxial cable allows the current to extend to the outside of the shield, generating a B1 + field. Matching is achieved using a single inductor at the distal side, and a cable trap enforces the desired antenna length. Finite difference time domain simulations are employed to optimize the design parameters. Phantom measurements are conducted to determine the antenna's B1 + efficiency and to find the S-parameters in straight and bent positions. Eight-channel simulations and measurements are performed for prostate imaging. RESULTS The optimal configuration is a length of 360 mm with a gap position of 40 mm. Simulation data show higher B1 + levels for the coax monopole (20% in the prostate), albeit with a 5% lower specific absorbance rate efficiency, compared to the fractionated dipole antenna. The S11 of the coax monopole exhibits remarkable robustness to loading changes. In vivo prostate imaging demonstrates B1 + levels of 10-14 μT with an input power of 8 × 800 W, which is comparable to the fractionated dipole antenna. High-quality images and acceptable coupling levels were achieved. CONCLUSION The coax monopole is a novel, flexible antenna for body imaging at 7 T. Its simple design incorporates a single inductor at the distal side to achieve matching, and one-sided feeding greatly simplifies cable routing.
Collapse
Affiliation(s)
- Lyanne M I Budé
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Bart R Steensma
- Division of Imaging and Oncology, UMC Utrecht, Utrecht, The Netherlands
| | - Irena Zivkovic
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Alexander J E Raaijmakers
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Division of Imaging and Oncology, UMC Utrecht, Utrecht, The Netherlands
| |
Collapse
|
5
|
Choi CH, Webb A, Orzada S, Kelenjeridze M, Shah NJ, Felder J. A Review of Parallel Transmit Arrays for Ultra-High Field MR Imaging. IEEE Rev Biomed Eng 2024; 17:351-368. [PMID: 37022919 DOI: 10.1109/rbme.2023.3244132] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Parallel transmission (pTX) techniques are required to tackle a number of challenges, e.g., the inhomogeneous distribution of the transmit field and elevated specific absorption rate (SAR), in ultra-high field (UHF) MR imaging. Additionally, they offer multiple degrees of freedom to create temporally- and spatially-tailored transverse magnetization. Given the increasing availability of MRI systems at 7 T and above, it is anticipated that interest in pTX applications will grow accordingly. One of the key components in MR systems capable of pTX is the design of the transmit array, as this has a major impact on performance in terms of power requirements, SAR and RF pulse design. While several reviews on pTX pulse design and the clinical applicability of UHF exist, there is currently no systematic review of pTX transmit/transceiver coils and their associated performance. In this article, we analyze transmit array concepts to determine the strengths and weaknesses of different types of design. We systematically review the different types of individual antennas employed for UHF, their combination into pTX arrays, and methods to decouple the individual elements. We also reiterate figures-of-merit (FoMs) frequently employed to describe the performance of pTX arrays and summarize published array designs in terms of these FoMs.
Collapse
|
6
|
Woo MK, DelaBarre L, Waks M, Lagore R, Kim J, Jungst S, Eryaman Y, Ugurbil K, Adriany G. A 32-Channel Sleeve Antenna Receiver Array for Human Head MRI Applications at 10.5 T. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:2643-2652. [PMID: 37030782 DOI: 10.1109/tmi.2023.3261922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
For human brain magnetic resonance imaging (MRI), high channel count ( ≥ 32 ) radiofrequency receiver coil arrays are utilized to achieve maximum signal-to-noise ratio (SNR) and to accelerate parallel imaging techniques. With ultra-high field (UHF) MRI at 7 tesla (T) and higher, dipole antenna arrays have been shown to generate high SNR in the deep regions of the brain, however the array elements exhibit increased electromagnetic coupling with one another, making array construction more difficult with the increasing number of elements. Compared to a classical dipole antenna array, a sleeve antenna array incorporates the coaxial ground into the feed-point, resulting in a modified asymmetric antenna structure with improved intra-element decoupling. Here, we extended our previous 16-channel sleeve transceiver work and developed a 32-channel azimuthally arranged sleeve antenna receive-only array for 10.5 T human brain imaging. We experimentally compared the achievable SNR of the sleeve antenna array at 10.5 T to a more traditional 32-channel loop array bult onto a human head-shaped former. The results obtained with a head shaped phantom clearly demonstrated that peripheral intrinsic SNR can be significantly improved compared to a loop array with the same number of elements- except for the superior part of the phantom where sleeve antenna elements are not located.
Collapse
|
7
|
Woo MK, DelaBarre L, Waks M, Lagore R, Radder J, Jungst S, Kang CK, Ugurbil K, Adriany G. A Monopole and Dipole Hybrid Antenna Array for Human Brain Imaging at 10.5 Tesla. IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS 2022; 21:1857-1861. [PMID: 37020750 PMCID: PMC10072856 DOI: 10.1109/lawp.2022.3183206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
In this letter, we evaluate antenna designs for ultra-high frequency and field (UHF) human brain magnetic resonance imaging (MRI) at 10.5 tesla (T). Although MRI at such UHF is expected to provide major signal-to-noise gains, the frequency of interest, 447 MHz, presents us with challenges regarding improved B1 + efficiency, image homogeneity, specific absorption rate (SAR), and antenna element decoupling for array configurations. To address these challenges, we propose the use of both monopole and dipole antennas in a novel hybrid configuration, which we refer to as a mono-dipole hybrid antenna (MDH) array. Compared to an 8-channel dipole antenna array of the same dimensions, the 8-channel MDH array showed an improvement in decoupling between adjacent array channels, as well as ~18% higher B1 + and SAR efficiency near the central region of the phantom based on simulation and experiment. However, the performances of the MDH and dipole antenna arrays were overall similar when evaluating a human model in terms of peak B1 + efficiency, 10 g SAR, and SAR efficiency. Finally, the concept of an MDH array showed an advantage in improved decoupling, SAR, and B1 + near the superior region of the brain for human brain imaging.
Collapse
Affiliation(s)
- Myung Kyun Woo
- Department of Biomedical Engineering, School of Electrical Engineering, University of Ulsan, Ulsan 44005, South Korea
| | - Lance DelaBarre
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN 55455 USA
| | - Matt Waks
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN 55455 USA
| | - Russell Lagore
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN 55455 USA
| | - Jerahmie Radder
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN 55455 USA
| | - Steve Jungst
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN 55455 USA
| | - Chang-Ki Kang
- Department of Radiological Science, College of Health Science, Gachon University, Incheon 1342, South Korea
| | - Kamil Ugurbil
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455 USA
| | - Gregor Adriany
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|
8
|
A 16-Channel Dipole Antenna Array for Human Head Magnetic Resonance Imaging at 10.5 Tesla. SENSORS 2021; 21:s21217250. [PMID: 34770558 PMCID: PMC8587099 DOI: 10.3390/s21217250] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 01/26/2023]
Abstract
For ultra-high field and frequency (UHF) magnetic resonance imaging (MRI), the associated short wavelengths in biological tissues leads to penetration and homogeneity issues at 10.5 tesla (T) and require antenna transmit arrays for efficiently generated 447 MHz B1+ fields (defined as the transmit radiofrequency (RF) magnetic field generated by RF coils). Previously, we evaluated a 16-channel combined loop + dipole antenna (LD) 10.5 T head array. While the LD array configuration did not achieve the desired B1+ efficiency, it showed an improvement of the specific absorption rate (SAR) efficiency compared to the separate 8-channel loop and separate 8-channel dipole antenna arrays at 10.5 T. Here we compare a 16-channel dipole antenna array with a 16-channel LD array of the same dimensions to evaluate B1+ efficiency, 10 g SAR, and SAR efficiency. The 16-channel dipole antenna array achieved a 24% increase in B1+ efficiency in the electromagnetic simulation and MR experiment compared to the LD array, as measured in the central region of a phantom. Based on the simulation results with a human model, we estimate that a 16-channel dipole antenna array for human brain imaging can increase B1+ efficiency by 15% with similar SAR efficiency compared to a 16-channel LD head array.
Collapse
|