1
|
Son JW, Han BD, Bennett JP, Heymsfield S, Lim S. Development and clinical application of bioelectrical impedance analysis method for body composition assessment. Obes Rev 2025; 26:e13844. [PMID: 39350475 DOI: 10.1111/obr.13844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 07/20/2024] [Accepted: 09/11/2024] [Indexed: 12/19/2024]
Abstract
Obesity, which is characterized by excessive body fat, increases the risk of chronic diseases, such as type 2 diabetes, cardiovascular diseases, and certain cancers. Sarcopenia, a decline in muscle mass, is also associated with many chronic disorders and is therefore a major concern in aging populations. Body composition analysis is important in the evaluation of obesity and sarcopenia because it provides information about the distribution of body fat and muscle mass. It is also useful for monitoring nutritional status, disease severity, and the effectiveness of interventions, such as exercise, diet, and drugs, and thus helps assess overall health and longevity. Computed tomography, magnetic resonance imaging, and dual-energy X-ray absorptiometry are commonly used for this purpose. However, they have limitations, such as high cost, long measurement time, and radiation exposure. Instead, bioelectrical impedance analysis (BIA), which was introduced several decades ago and has undergone significant technological advancements, can be used. It is easily accessible, affordable, and importantly, poses no radiation risk, making it suitable for use in hospitals, fitness centers, and even at home. Herein, we review the recent technological developments and clinical applications of BIA to provide an updated understanding of BIA technology and its strengths and limitations.
Collapse
Affiliation(s)
- Jang Won Son
- Department of Internal Medicine, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Byoung-Duck Han
- Department of Family Medicine, Korea University College of Medicine, Seoul, South Korea
| | | | - Steve Heymsfield
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Soo Lim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| |
Collapse
|
2
|
Chowdhury MUS, Roy S, Aryal KP, Leung H, Pandey R. Realizing the Potential of Commercial E-Textiles for Wearable Glucose Biosensing Application. ACS MATERIALS AU 2024; 4:592-603. [PMID: 39554862 PMCID: PMC11565280 DOI: 10.1021/acsmaterialsau.4c00033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 11/19/2024]
Abstract
Advancements in wearable technology have enabled noninvasive health monitoring using biosensors. This research focuses on developing a textile-based sweat glucose sensor using commercially available conductive textiles, evading the complexity of traditional fabrication methods. A comparative analysis of three low-cost conductive textiles, Adafruit 1364, 1167, and 4762, has been conducted for electrochemical glucose detection with glucose-specific enzymes such as glucose oxidase (GOx) and glucose dehydrogenase (GDH). Adafruit 1364 outperformed others in morphological, electrochemical, and wearable properties. Cyclic voltammetry shows that Adafruit 1364 and 4762 effectively detect glucose at the potential of 0.23 and 0.08 V using glucose oxidase and 0.1 and 0.08 V using glucose dehydrogenase enzymes, respectively. Furthermore, chronoamperometry has been conducted to confirm the presence of glucose at 1 μM concentration. Differential pulse voltammetry was conducted to assess the sensitivity of the Adafruit 1364 fabric electrode using glucose solutions with concentrations of 0.05, 0.15, 0.25, and 0.5 mM. The electrode immobilized with GOx showed a sensitivity of 0.005 μA μM-1 and a limit of detection (LOD) of 41.3 μM, while the electrode immobilized with GDH exhibited a sensitivity of 0.0019 μA μM-1 and an LOD of 63.1 μM. The study also highlighted the reproducibility, effect of interferents, and advantageous wearable properties of these sensors.
Collapse
Affiliation(s)
| | - Sutirtha Roy
- Department
of Electrical and Software Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Krishna Prasad Aryal
- Department
of Biomedical Engineering, University of
Calgary, Calgary T2N 1N4, Alberta, Canada
| | - Henry Leung
- Department
of Electrical and Software Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Richa Pandey
- Department
of Biomedical Engineering, University of
Calgary, Calgary T2N 1N4, Alberta, Canada
- Hotchkiss
Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|
3
|
Heredia-Rivera U, Krishnakumar A, Kasi V, Rana MM, Gopalakrishnan S, Nejati S, Gundala G, Barnard JP, Wang H, Rahimi R. Cold atmospheric plasma deposition of antibacterial polypyrrole-silver nanocomposites on wearable electronics for prolonged performance. JOURNAL OF MATERIALS CHEMISTRY. C 2024; 12:11861-11876. [PMID: 39132258 PMCID: PMC11308805 DOI: 10.1039/d4tc00844h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/09/2024] [Indexed: 08/13/2024]
Abstract
Wearable electronics have become integral for monitoring physiological parameters in diverse applications, particularly in medical and military fields. e-Textiles, featuring integrated conductive threads or fabrics, offer seamless integration and comfort for prolonged contact with the body. Despite their potential, the biofouling of textile-based electrode systems by skin microbes remains a significant challenge, limiting their operational lifespan. Recent studies have highlighted the efficacy of conductive nanocomposites with antibacterial agents, such as silver nanoparticles (AgNPs), in addressing biofouling concerns. However, implementing such systems on 3D fibrous structures and textile surfaces often proves complex and inefficient. To overcome these challenges, we explored cold atmospheric plasma (CAP)-based in situ polymerization for the direct deposition of functional conductive polypyrrole-silver (PPy-Ag) nanocomposites onto conductive textile surfaces. For this process, a customized CAP deposition system was engineered, enabling precise material deposition through robotic control of the plasma jet. This process achieved direct, conformal attachment onto textile fibrous structures, ensuring uniform distribution of conductive polypyrrole and silver in the form of AgNPs throughout the polymer polypyrrole matrix without compromising fabric flexibility and breathability, which was validated through different surface electron microscopy and chemical analysis (e.g., EDX, FTIR, Raman, and XRD). Systematic studies with various precursor mixtures identified an optimized PPy-Ag composition that demonstrated stable antibacterial properties and biocompatibility against common skin microbes and epithelial cells. Systematic studies with various precursor mixtures identified an optimized PPy-Ag composition, with the precursor mixture containing 96 wt% pyrrole and 4 wt% AgNO3 weight ratios as the optimal surface coating process, demonstrating stable antibacterial properties and biocompatibility against common skin microbes and epithelial cells respectively. As a proof of concept, the nanocomposite coating was applied to conductive carbon fabric surfaces as dry electrodes in a wearable garment for continues electrocardiography (ECG) monitoring over 10 days. Results revealed a significantly longer performance of the dry electrodes as comparable to standard gel-based Ag/AgCl electrodes (1 day) while providing less noise in ECG signal measurements from the subject, showcasing the potential of this technology for practical wearable applications. Envisioned as a groundbreaking solution, this technology opens new avenues for the scalable and effective integration of functional conductive circuits and sensors into everyday garments, ensuring prolonged and efficient performance in wearable electronics.
Collapse
Affiliation(s)
- Ulisses Heredia-Rivera
- School of Materials Engineering, Purdue University West Lafayette IN 47907 USA
- Birck Nanotechnology Centre, Purdue University West Lafayette IN 47907 USA
| | - Akshay Krishnakumar
- Birck Nanotechnology Centre, Purdue University West Lafayette IN 47907 USA
- School of Electrical and Computer Engineering, Purdue University West Lafayette IN 47907 USA
| | - Venkat Kasi
- School of Materials Engineering, Purdue University West Lafayette IN 47907 USA
- Birck Nanotechnology Centre, Purdue University West Lafayette IN 47907 USA
| | - Muhammad Masud Rana
- Birck Nanotechnology Centre, Purdue University West Lafayette IN 47907 USA
- School of Electrical and Computer Engineering, Purdue University West Lafayette IN 47907 USA
| | - Sarath Gopalakrishnan
- Birck Nanotechnology Centre, Purdue University West Lafayette IN 47907 USA
- School of Electrical and Computer Engineering, Purdue University West Lafayette IN 47907 USA
| | - Sina Nejati
- School of Materials Engineering, Purdue University West Lafayette IN 47907 USA
- Birck Nanotechnology Centre, Purdue University West Lafayette IN 47907 USA
| | - Gagan Gundala
- Birck Nanotechnology Centre, Purdue University West Lafayette IN 47907 USA
- School of Electrical and Computer Engineering, Purdue University West Lafayette IN 47907 USA
| | - James P Barnard
- School of Materials Engineering, Purdue University West Lafayette IN 47907 USA
- Birck Nanotechnology Centre, Purdue University West Lafayette IN 47907 USA
| | - Haiyan Wang
- School of Materials Engineering, Purdue University West Lafayette IN 47907 USA
- Birck Nanotechnology Centre, Purdue University West Lafayette IN 47907 USA
| | - Rahim Rahimi
- School of Materials Engineering, Purdue University West Lafayette IN 47907 USA
- Birck Nanotechnology Centre, Purdue University West Lafayette IN 47907 USA
- School of Electrical and Computer Engineering, Purdue University West Lafayette IN 47907 USA
| |
Collapse
|
4
|
Abbasnia A, Ravan M, K. Amineh R. Elbow Gesture Recognition with an Array of Inductive Sensors and Machine Learning. SENSORS (BASEL, SWITZERLAND) 2024; 24:4202. [PMID: 39000981 PMCID: PMC11244302 DOI: 10.3390/s24134202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/18/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024]
Abstract
This work presents a novel approach for elbow gesture recognition using an array of inductive sensors and a machine learning algorithm (MLA). This paper describes the design of the inductive sensor array integrated into a flexible and wearable sleeve. The sensor array consists of coils sewn onto the sleeve, which form an LC tank circuit along with the externally connected inductors and capacitors. Changes in the elbow position modulate the inductance of these coils, allowing the sensor array to capture a range of elbow movements. The signal processing and random forest MLA to recognize 10 different elbow gestures are described. Rigorous evaluation on 8 subjects and data augmentation, which leveraged the dataset to 1270 trials per gesture, enabled the system to achieve remarkable accuracy of 98.3% and 98.5% using 5-fold cross-validation and leave-one-subject-out cross-validation, respectively. The test performance was then assessed using data collected from five new subjects. The high classification accuracy of 94% demonstrates the generalizability of the designed system. The proposed solution addresses the limitations of existing elbow gesture recognition designs and offers a practical and effective approach for intuitive human-machine interaction.
Collapse
Affiliation(s)
| | | | - Reza K. Amineh
- Department of Electrical and Computer Engineering, New York Institute of Technology, New York, NY 10023, USA; (A.A.); (M.R.)
| |
Collapse
|
5
|
Tian H, Ma J, Li Y, Xiao X, Zhang M, Wang H, Zhu N, Hou C, Ulstrup J. Electrochemical sensing fibers for wearable health monitoring devices. Biosens Bioelectron 2024; 246:115890. [PMID: 38048721 DOI: 10.1016/j.bios.2023.115890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/17/2023] [Accepted: 11/25/2023] [Indexed: 12/06/2023]
Abstract
Real-time monitoring of health conditions is an emerging strong issue in health care, internet information, and other strongly evolving areas. Wearable electronics are versatile platforms for non-invasive sensing. Among a variety of wearable device principles, fiber electronics represent cutting-edge development of flexible electronics. Enabled by electrochemical sensing, fiber electronics have found a wide range of applications, providing new opportunities for real-time monitoring of health conditions by daily wearing, and electrochemical fiber sensors as explored in the present report are a promising emerging field. In consideration of the key challenges and corresponding solutions for electrochemical sensing fibers, we offer here a timely and comprehensive review. We discuss the principles and advantages of electrochemical sensing fibers and fabrics. Our review also highlights the importance of electrochemical sensing fibers in the fabrication of "smart" fabric designs, focusing on strategies to address key issues in fiber-based electrochemical sensors, and we provide an overview of smart clothing systems and their cutting-edge applications in therapeutic care. Our report offers a comprehensive overview of current developments in electrochemical sensing fibers to researchers in the fields of wearables, flexible electronics, and electrochemical sensing, stimulating forthcoming development of next-generation "smart" fabrics-based electrochemical sensing.
Collapse
Affiliation(s)
- Hang Tian
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Junlin Ma
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning, 116024, PR China
| | - Yaogang Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, PR China.
| | - Xinxin Xiao
- Department of Chemistry and Bioscience, Aalborg University, 9220, Aalborg, Denmark.
| | - Minwei Zhang
- Xinjiang Key Laboratory of Biological Resources and Gentic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi, 830046, PR China
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Nan Zhu
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning, 116024, PR China.
| | - Chengyi Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, PR China.
| | - Jens Ulstrup
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby, 2800, Denmark.
| |
Collapse
|
6
|
Bandur A, Sadatamin D, Piper B, Culjak I, Dzapo H, Yadollahi A. Designing a Wearable Wireless System for Real-time Bioimpedance Spectroscopy of Body Fluid. 2023 IEEE BIOMEDICAL CIRCUITS AND SYSTEMS CONFERENCE (BIOCAS) 2023:1-5. [DOI: 10.1109/biocas58349.2023.10388884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- Antonio Bandur
- University Health Network,KITE-Toronto Rehabilitation Institute,Toronto,Canada
| | - Delaram Sadatamin
- University Health Network,KITE-Toronto Rehabilitation Institute,Toronto,Canada
| | - Bryan Piper
- University Health Network,KITE-Toronto Rehabilitation Institute,Toronto,Canada
| | - Ivana Culjak
- University Health Network,KITE-Toronto Rehabilitation Institute,Toronto,Canada
| | - Hrvoje Dzapo
- University of Zagreb,Faculty of Electrical Engineering and Computing,Zagreb,Croatia
| | - Azadeh Yadollahi
- University Health Network,KITE-Toronto Rehabilitation Institute,Toronto,Canada
| |
Collapse
|
7
|
Ju F, Wang Y, Yin B, Zhao M, Zhang Y, Gong Y, Jiao C. Microfluidic Wearable Devices for Sports Applications. MICROMACHINES 2023; 14:1792. [PMID: 37763955 PMCID: PMC10535163 DOI: 10.3390/mi14091792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
This study aimed to systematically review the application and research progress of flexible microfluidic wearable devices in the field of sports. The research team thoroughly investigated the use of life signal-monitoring technology for flexible wearable devices in the domain of sports. In addition, the classification of applications, the current status, and the developmental trends of similar products and equipment were evaluated. Scholars expect the provision of valuable references and guidance for related research and the development of the sports industry. The use of microfluidic detection for collecting biomarkers can mitigate the impact of sweat on movements that are common in sports and can also address the issue of discomfort after prolonged use. Flexible wearable gadgets are normally utilized to monitor athletic performance, rehabilitation, and training. Nevertheless, the research and development of such devices is limited, mostly catering to professional athletes. Devices for those who are inexperienced in sports and disabled populations are lacking. Conclusions: Upgrading microfluidic chip technology can lead to accurate and safe sports monitoring. Moreover, the development of multi-functional and multi-site devices can provide technical support to athletes during their training and competitions while also fostering technological innovation in the field of sports science.
Collapse
Affiliation(s)
- Fangyuan Ju
- College of Physical Education, Yangzhou University, Yangzhou 225127, China; (F.J.); (Y.W.); (M.Z.); (Y.Z.)
| | - Yujie Wang
- College of Physical Education, Yangzhou University, Yangzhou 225127, China; (F.J.); (Y.W.); (M.Z.); (Y.Z.)
| | - Binfeng Yin
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China;
| | - Mengyun Zhao
- College of Physical Education, Yangzhou University, Yangzhou 225127, China; (F.J.); (Y.W.); (M.Z.); (Y.Z.)
| | - Yupeng Zhang
- College of Physical Education, Yangzhou University, Yangzhou 225127, China; (F.J.); (Y.W.); (M.Z.); (Y.Z.)
| | - Yuanyuan Gong
- Institute of Physical Education, Shanghai Normal University, Shanghai 200234, China;
| | - Changgeng Jiao
- Institute of Physical Education, Shanghai Normal University, Shanghai 200234, China;
| |
Collapse
|
8
|
Nichols CJ, Mabrouk SA, Ozmen GC, Gazi AH, Inan OT. Validating Adhesive-Free Bioimpedance of the Leg in Mid-Activity and Uncontrolled Settings. IEEE Trans Biomed Eng 2023; 70:2679-2689. [PMID: 37027282 DOI: 10.1109/tbme.2023.3262206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
OBJECTIVE Musculoskeletal health monitoring is limited in everyday settings where patient symptoms can substantially change - delaying treatment and worsening patient outcomes. Wearable technologies aim to quantify musculoskeletal health outside clinical settings but sensor constraints limit usability. Wearable localized multi-frequency bioimpedance assessment (MFBIA) shows promise for tracking musculoskeletal health but relies on gel electrodes, hindering extended at-home use. Here, we address this need for usable technologies for at-home musculoskeletal health assessment by designing a wearable adhesive-free MFBIA system using textile electrodes in extended uncontrolled mid-activity settings. METHODS An adhesive-free multimodal wearable leg MFBIA system was developed in-lab under realistic conditions (5 participants, 45 measurements). Mid-activity textile and gel electrode MFBIA was compared across multiple compound movements (10 participants). Accuracy in tracking long-term changes in leg MFBIA was assessed by correlating gel and textile MFBIA simultaneously recorded in uncontrolled settings (10 participants, 80+ measurement hours). RESULTS Mid-activity MFBIA measurements with textile electrodes agreed highly with (ground truth) gel electrode measurements (average [Formula: see text], featuring <1-Ohm differences (0.618 ± 0.340 Ω) across all movements. Longitudinal MFBIA changes were successfully measured in extended at-home settings (repeated measures r = 0.84). Participant responses found the system to be comfortable and intuitive (8.3/10), and all participants were able to don and operate the system independently. CONCLUSION This work demonstrates wearable textile electrodes can be a viable substitute for gel electrodes when monitoring leg MFBIA in dynamic, uncontrolled settings. SIGNIFICANCE Adhesive-free MFBIA can improve healthcare by enabling robust wearable musculoskeletal health monitoring in at-home and everyday settings.
Collapse
|
9
|
Ha H, Suryaprabha T, Choi C, Chandio ZA, Kim B, Lim S, Cheong JY, Hwang B. Recent research trends in textile-based temperature sensors: a mini review. NANOTECHNOLOGY 2023; 34:422001. [PMID: 37473742 DOI: 10.1088/1361-6528/ace913] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/20/2023] [Indexed: 07/22/2023]
Abstract
In this review, the current state of research on textile-based temperature sensors is explored by focusing on their potential use in various applications. The textile-based sensors show various advantages including flexibility, conformability and seamlessness for the wearer. Integration of the textile-based sensors into clothes or fabric-based products enables continuous and sensitive monitoring of change in temperature, which can be used for various medical and fitness applications. However, there are lacks of comprehensive review on the textile-based temperature sensors. This review introduces various types of textile-based temperature sensors, including resistive, thermoelectric and fibre-optical sensors. In addition, the challenges that need to be addressed to fully realise their potential, which include improving sensitivity and accuracy, integrating wireless communication capabilities, and developing low-cost fabrication techniques. The technological advances in textile-based temperature sensors to overcome the limitations will revolutionize wearable devices requiring function of temperature monitoring.
Collapse
Affiliation(s)
- Heebo Ha
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | | | - Chunghyeon Choi
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Zubair Ahmed Chandio
- Bavarian Center for Battery Technology (BayBatt) and Department of Chemistry, University of Bayreuth, Universitätsstraße 30, D-95447 Bayreuth, Germany
| | - Byungjin Kim
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sooman Lim
- Department of Flexible and Printable Electronics, LANL-JBNU Engineering Institute, Jeonbuk National University, Jeonju, Republic of Korea
| | - Jun Young Cheong
- Bavarian Center for Battery Technology (BayBatt) and Department of Chemistry, University of Bayreuth, Universitätsstraße 30, D-95447 Bayreuth, Germany
| | - Byungil Hwang
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
10
|
Rêgo ADS, Furtado GE, Bernardes RA, Santos-Costa P, Dias RA, Alves FS, Ainla A, Arruda LM, Moreira IP, Bessa J, Fangueiro R, Gomes F, Henriques M, Sousa-Silva M, Pinto AC, Bouçanova M, Sousa VIF, Tavares CJ, Barboza R, Carvalho M, Filipe L, Sousa LB, Apóstolo JA, Parreira P, Salgueiro-Oliveira A. Development of Smart Clothing to Prevent Pressure Injuries in Bedridden Persons and/or with Severely Impaired Mobility: 4NoPressure Research Protocol. Healthcare (Basel) 2023; 11:1361. [PMID: 37239647 PMCID: PMC10218695 DOI: 10.3390/healthcare11101361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/25/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Pressure injuries (PIs) are a major public health problem and can be used as quality-of-care indicators. An incipient development in the field of medical devices takes the form of Smart Health Textiles, which can possess innovative properties such as thermoregulation, sensing, and antibacterial control. This protocol aims to describe the process for the development of a new type of smart clothing for individuals with reduced mobility and/or who are bedridden in order to prevent PIs. This paper's main purpose is to present the eight phases of the project, each consisting of tasks in specific phases: (i) product and process requirements and specifications; (ii and iii) study of the fibrous structure technology, textiles, and design; (iv and v) investigation of the sensor technology with respect to pressure, temperature, humidity, and bioactive properties; (vi and vii) production layout and adaptations in the manufacturing process; (viii) clinical trial. This project will introduce a new structural system and design for smart clothing to prevent PIs. New materials and architectures will be studied that provide better pressure relief, thermo-physiological control of the cutaneous microclimate, and personalisation of care.
Collapse
Affiliation(s)
- Anderson da Silva Rêgo
- Health Sciences Research Unit: Nursing (UICISA: E), Nursing School of Coimbra (ESEnfC), 3000-232 Coimbra, Portugal; (G.E.F.); (R.A.B.); (P.S.-C.); (L.F.); (L.B.S.); (J.A.A.); (P.P.); (A.S.-O.)
| | - Guilherme Eustáquio Furtado
- Health Sciences Research Unit: Nursing (UICISA: E), Nursing School of Coimbra (ESEnfC), 3000-232 Coimbra, Portugal; (G.E.F.); (R.A.B.); (P.S.-C.); (L.F.); (L.B.S.); (J.A.A.); (P.P.); (A.S.-O.)
- Polytechnic Institute of Coimbra, Applied Research Institute, Rua da Misericórdia, Lagar dos Cortiços–S. Martinho do Bispo, 3045-093 Coimbra, Portugal
| | - Rafael A. Bernardes
- Health Sciences Research Unit: Nursing (UICISA: E), Nursing School of Coimbra (ESEnfC), 3000-232 Coimbra, Portugal; (G.E.F.); (R.A.B.); (P.S.-C.); (L.F.); (L.B.S.); (J.A.A.); (P.P.); (A.S.-O.)
| | - Paulo Santos-Costa
- Health Sciences Research Unit: Nursing (UICISA: E), Nursing School of Coimbra (ESEnfC), 3000-232 Coimbra, Portugal; (G.E.F.); (R.A.B.); (P.S.-C.); (L.F.); (L.B.S.); (J.A.A.); (P.P.); (A.S.-O.)
| | - Rosana A. Dias
- International Iberian Laboratory of Nanotechnology (INL), 4715-330 Braga, Portugal; (R.A.D.); (F.S.A.); (A.A.)
| | - Filipe S. Alves
- International Iberian Laboratory of Nanotechnology (INL), 4715-330 Braga, Portugal; (R.A.D.); (F.S.A.); (A.A.)
| | - Alar Ainla
- International Iberian Laboratory of Nanotechnology (INL), 4715-330 Braga, Portugal; (R.A.D.); (F.S.A.); (A.A.)
| | - Luisa M. Arruda
- Fibrenamics, Institute of Innovation on Fibre-Based Materials and Composites, University of Minho, 4800-058 Guimaraes, Portugal; (L.M.A.); (I.P.M.); (J.B.); (R.F.)
- Centre for Textile Science and Technology (2C2T), University of Minho, 4800-058 Guimaraes, Portugal; (R.B.); (M.C.)
| | - Inês P. Moreira
- Fibrenamics, Institute of Innovation on Fibre-Based Materials and Composites, University of Minho, 4800-058 Guimaraes, Portugal; (L.M.A.); (I.P.M.); (J.B.); (R.F.)
- Centre for Textile Science and Technology (2C2T), University of Minho, 4800-058 Guimaraes, Portugal; (R.B.); (M.C.)
| | - João Bessa
- Fibrenamics, Institute of Innovation on Fibre-Based Materials and Composites, University of Minho, 4800-058 Guimaraes, Portugal; (L.M.A.); (I.P.M.); (J.B.); (R.F.)
- Centre for Textile Science and Technology (2C2T), University of Minho, 4800-058 Guimaraes, Portugal; (R.B.); (M.C.)
| | - Raul Fangueiro
- Fibrenamics, Institute of Innovation on Fibre-Based Materials and Composites, University of Minho, 4800-058 Guimaraes, Portugal; (L.M.A.); (I.P.M.); (J.B.); (R.F.)
- Centre for Textile Science and Technology (2C2T), University of Minho, 4800-058 Guimaraes, Portugal; (R.B.); (M.C.)
| | - Fernanda Gomes
- CEB—Centre of Biological Engineering, LIBRO—Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal; (F.G.); (M.H.); (M.S.-S.); (A.C.P.)
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Mariana Henriques
- CEB—Centre of Biological Engineering, LIBRO—Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal; (F.G.); (M.H.); (M.S.-S.); (A.C.P.)
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Maria Sousa-Silva
- CEB—Centre of Biological Engineering, LIBRO—Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal; (F.G.); (M.H.); (M.S.-S.); (A.C.P.)
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Alexandra C. Pinto
- CEB—Centre of Biological Engineering, LIBRO—Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal; (F.G.); (M.H.); (M.S.-S.); (A.C.P.)
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Maria Bouçanova
- Impetus Portugal-Têxteis Sa (IMPETUS), 4740-696 Barcelos, Portugal;
| | - Vânia Isabel Fernande Sousa
- Physics Center of Minho and Porto Universities (CF-UM-PT), Campus of Azurém, University of Minho, 4804-533 Guimarães, Portugal; (V.I.F.S.); (C.J.T.)
| | - Carlos José Tavares
- Physics Center of Minho and Porto Universities (CF-UM-PT), Campus of Azurém, University of Minho, 4804-533 Guimarães, Portugal; (V.I.F.S.); (C.J.T.)
| | - Rochelne Barboza
- Centre for Textile Science and Technology (2C2T), University of Minho, 4800-058 Guimaraes, Portugal; (R.B.); (M.C.)
| | - Miguel Carvalho
- Centre for Textile Science and Technology (2C2T), University of Minho, 4800-058 Guimaraes, Portugal; (R.B.); (M.C.)
| | - Luísa Filipe
- Health Sciences Research Unit: Nursing (UICISA: E), Nursing School of Coimbra (ESEnfC), 3000-232 Coimbra, Portugal; (G.E.F.); (R.A.B.); (P.S.-C.); (L.F.); (L.B.S.); (J.A.A.); (P.P.); (A.S.-O.)
| | - Liliana B. Sousa
- Health Sciences Research Unit: Nursing (UICISA: E), Nursing School of Coimbra (ESEnfC), 3000-232 Coimbra, Portugal; (G.E.F.); (R.A.B.); (P.S.-C.); (L.F.); (L.B.S.); (J.A.A.); (P.P.); (A.S.-O.)
| | - João A. Apóstolo
- Health Sciences Research Unit: Nursing (UICISA: E), Nursing School of Coimbra (ESEnfC), 3000-232 Coimbra, Portugal; (G.E.F.); (R.A.B.); (P.S.-C.); (L.F.); (L.B.S.); (J.A.A.); (P.P.); (A.S.-O.)
| | - Pedro Parreira
- Health Sciences Research Unit: Nursing (UICISA: E), Nursing School of Coimbra (ESEnfC), 3000-232 Coimbra, Portugal; (G.E.F.); (R.A.B.); (P.S.-C.); (L.F.); (L.B.S.); (J.A.A.); (P.P.); (A.S.-O.)
| | - Anabela Salgueiro-Oliveira
- Health Sciences Research Unit: Nursing (UICISA: E), Nursing School of Coimbra (ESEnfC), 3000-232 Coimbra, Portugal; (G.E.F.); (R.A.B.); (P.S.-C.); (L.F.); (L.B.S.); (J.A.A.); (P.P.); (A.S.-O.)
| |
Collapse
|
11
|
Etana BB, Malengier B, Kwa T, Krishnamoorthy J, Langenhove LV. Evaluation of Novel Embroidered Textile-Electrodes Made from Hybrid Polyamide Conductive Threads for Surface EMG Sensing. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23094397. [PMID: 37177601 PMCID: PMC10181695 DOI: 10.3390/s23094397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/06/2023] [Accepted: 03/16/2023] [Indexed: 05/15/2023]
Abstract
Recently, there has been an increase in the number of reports on textile-based dry electrodes that can detect biopotentials without the need for electrolytic gels. However, these textile electrodes have a higher electrode skin interface impedance due to the improper contact between the skin and the electrode, diminishing the reliability and repeatability of the sensor. To facilitate improved skin-electrode contact, the effects of load and holding contact pressure were monitored for an embroidered textile electrode composed of multifilament hybrid thread for its application as a surface electromyography (sEMG) sensor. The effect of the textile's inter-electrode distance and double layering of embroidery that increases the density of the conductive threads were studied. Electrodes embroidered onto an elastic strap were wrapped around the forearm with a hook and loop fastener and tested for their performance. Time domain features such as the Root Mean Square (RMS), Average Rectified Value (ARV), and Signal to Noise Ratio (SNR) were quantitatively monitored in relation to the contact pressure and load. Experiments were performed in triplicates, and the sEMG signal characteristics were observed for various loads (0, 2, 4, and 6 kg) and holding contact pressures (5, 10, and 20 mmHg). sEMG signals recorded with textile electrodes were comparable in amplitude to those recorded using typical Ag/AgCl electrodes (28.45 dB recorded), while the signal-to-noise ratios were, 11.77, 19.60, 19.91, and 20.93 dB for the different loads, and 21.33, 23.34, and 17.45 dB for different holding pressures. The signal quality increased as the elastic strap was tightened further, but a pressure higher than 20 mmHg is not recommended because of the discomfort experienced by the subjects during data collection.
Collapse
Affiliation(s)
- Bulcha Belay Etana
- Department of Materials, Textiles and Chemical Engineering, Ghent University, 9000 Gent, Belgium
- Jimma Institute of Technology (JiT), School of Materials Science and Engineering, Jimma University, Jimma P.O. Box 378, Ethiopia
| | - Benny Malengier
- Department of Materials, Textiles and Chemical Engineering, Ghent University, 9000 Gent, Belgium
| | - Timothy Kwa
- Medtronic, 710 Medtronic Parkway Minneapolis, Minneapolis, MN 55432-5604, USA
| | - Janarthanan Krishnamoorthy
- Jimma Institute of Technology (JiT), School of Biomedical Engineering, Jimma University, Jimma P.O. Box 378, Ethiopia
| | - Lieva Van Langenhove
- Department of Materials, Textiles and Chemical Engineering, Ghent University, 9000 Gent, Belgium
| |
Collapse
|
12
|
Mamun A, Sabantina L. Electrospun Magnetic Nanofiber Mats for Magnetic Hyperthermia in Cancer Treatment Applications-Technology, Mechanism, and Materials. Polymers (Basel) 2023; 15:1902. [PMID: 37112049 PMCID: PMC10143376 DOI: 10.3390/polym15081902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
The number of cancer patients is rapidly increasing worldwide. Among the leading causes of human death, cancer can be regarded as one of the major threats to humans. Although many new cancer treatment procedures such as chemotherapy, radiotherapy, and surgical methods are nowadays being developed and used for testing purposes, results show limited efficiency and high toxicity, even if they have the potential to damage cancer cells in the process. In contrast, magnetic hyperthermia is a field that originated from the use of magnetic nanomaterials, which, due to their magnetic properties and other characteristics, are used in many clinical trials as one of the solutions for cancer treatment. Magnetic nanomaterials can increase the temperature of nanoparticles located in tumor tissue by applying an alternating magnetic field. A very simple, inexpensive, and environmentally friendly method is the fabrication of various types of functional nanostructures by adding magnetic additives to the spinning solution in the electrospinning process, which can overcome the limitations of this challenging treatment process. Here, we review recently developed electrospun magnetic nanofiber mats and magnetic nanomaterials that support magnetic hyperthermia therapy, targeted drug delivery, diagnostic and therapeutic tools, and techniques for cancer treatment.
Collapse
Affiliation(s)
- Al Mamun
- Junior Research Group “Nanomaterials”, Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany
| | - Lilia Sabantina
- Faculty of Clothing Technology and Garment Engineering, HTW-Berlin University of Applied Sciences, 12459 Berlin, Germany
| |
Collapse
|
13
|
Erickson JC, Stepanyan E, Hassid E. Comparison of Dry and Wet Electrodes for Detecting Gastrointestinal Activity Patterns from Body Surface Electrical Recordings. Ann Biomed Eng 2023; 51:1310-1321. [PMID: 36656453 DOI: 10.1007/s10439-023-03137-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 12/25/2022] [Indexed: 01/20/2023]
Abstract
Gastrointestinal motility patterns can be mapped via electrical signals measured non-invasively on the body surface. However, short-term (≈ 2-4 h) meal response studies as well as long-term monitoring (≥ 24 h) may be hindered by skin irritation inherent with traditional Ag/AgCl pre-gelled ("wet") electrodes. The aim of this work was to investigate the practical utility of using dry electrodes for GI body-surface electrical measurements. To directly compare dry vs. wet electrodes, we simultaneously recorded electrical signals from both types arranged in a 9-electrode array during an ≈ 2.5 h colonic meal-response study. Wavelet-based analyses were used to identify the signature post-meal colonic cyclic motor patterns. Blinded comparison of signal quality was carried out by four expert manual reviewers in order to assess the practical utility of each electrode type for identifying GI activity patterns. Dry electrodes recorded high-quality GI signals with signal-to-noise ratio of 10.0 ± 3.5 dB, comparable to that of wet electrodes (9.9 ± 3.6 dB). Although users rated dry electrodes as slightly more difficult to self-apply, they caused no skin irritation and were thus better tolerated overall. Dry electrodes are a more comfortable alternative to conventional wet electrode systems, and may offer a potentially viable option for long-term GI monitoring studies.
Collapse
Affiliation(s)
- Jonathan C Erickson
- Department of Physics and Engineering, Washington and Lee University, Lexington, VA, USA.
| | - Elen Stepanyan
- Department of Physics and Engineering, Washington and Lee University, Lexington, VA, USA
| | - Emily Hassid
- Department of Physics and Engineering, Washington and Lee University, Lexington, VA, USA
| |
Collapse
|
14
|
Sun W, Guo Z, Yang Z, Wu Y, Lan W, Liao Y, Wu X, Liu Y. A Review of Recent Advances in Vital Signals Monitoring of Sports and Health via Flexible Wearable Sensors. SENSORS (BASEL, SWITZERLAND) 2022; 22:7784. [PMID: 36298135 PMCID: PMC9607392 DOI: 10.3390/s22207784] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 05/24/2023]
Abstract
In recent years, vital signals monitoring in sports and health have been considered the research focus in the field of wearable sensing technologies. Typical signals include bioelectrical signals, biophysical signals, and biochemical signals, which have applications in the fields of athletic training, medical diagnosis and prevention, and rehabilitation. In particular, since the COVID-19 pandemic, there has been a dramatic increase in real-time interest in personal health. This has created an urgent need for flexible, wearable, portable, and real-time monitoring sensors to remotely monitor these signals in response to health management. To this end, the paper reviews recent advances in flexible wearable sensors for monitoring vital signals in sports and health. More precisely, emerging wearable devices and systems for health and exercise-related vital signals (e.g., ECG, EEG, EMG, inertia, body movements, heart rate, blood, sweat, and interstitial fluid) are reviewed first. Then, the paper creatively presents multidimensional and multimodal wearable sensors and systems. The paper also summarizes the current challenges and limitations and future directions of wearable sensors for vital typical signal detection. Through the review, the paper finds that these signals can be effectively monitored and used for health management (e.g., disease prediction) thanks to advanced manufacturing, flexible electronics, IoT, and artificial intelligence algorithms; however, wearable sensors and systems with multidimensional and multimodal are more compliant.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yuanyuan Liu
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| |
Collapse
|
15
|
Kim H, Kim S, Lim D, Jeong W. Development and Characterization of Embroidery-Based Textile Electrodes for Surface EMG Detection. SENSORS (BASEL, SWITZERLAND) 2022; 22:4746. [PMID: 35808240 PMCID: PMC9268917 DOI: 10.3390/s22134746] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
The interest in wearable devices has expanded to measurement devices for building IoT-based mobile healthcare systems and sensing bio-signal data through clothing. Surface electromyography, called sEMG, is one of the most popular bio-signals that can be applied to health monitoring systems. In general, gel-based (Ag/AgCl) electrodes are mainly used, but there are problems, such as skin irritation due to long-time wearing, deterioration of adhesion to the skin due to moisture or sweat, and low applicability to clothes. Hence, research on dry electrodes as a replacement is increasing. Accordingly, in this study, a textile-based electrode was produced with a range of electrode shapes, and areas were embroidered with conductive yarn using an embroidery technique in the clothing manufacturing process. The electrode was applied to EMG smart clothing for fitness, and the EMG signal detection performance was analyzed. The electrode shape was manufactured using the circle and wave type. The wave-type electrode was more morphologically stable than the circle-type electrode by up to 30% strain, and the electrode shape was maintained as the embroidered area increased. Skin-electrode impedance analysis confirmed that the embroidered area with conductive yarn affected the skin contact area, and the impedance decreased with increasing area. For sEMG performance analysis, the rectus femoris was selected as a target muscle, and the sEMG parameters were analyzed. The wave-type sample showed higher EMG signal strength than the circle-type. In particular, the electrode with three lines showed better performance than the fill-type electrode. These performances operated without noise, even with a commercial device. Therefore, it is expected to be applicable to the manufacture of electromyography smart clothing based on embroidered electrodes in the future.
Collapse
Affiliation(s)
- Hyelim Kim
- Material and Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Korea; (H.K.); (D.L.)
| | - Siyeon Kim
- Reliability Assesment Center, FITI Testing and Research Institute, Seoul 07791, Korea;
| | - Daeyoung Lim
- Material and Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Korea; (H.K.); (D.L.)
| | - Wonyoung Jeong
- Material and Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Korea; (H.K.); (D.L.)
| |
Collapse
|
16
|
Shak Sadi M, Kumpikaitė E. Advances in the Robustness of Wearable Electronic Textiles: Strategies, Stability, Washability and Perspective. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2039. [PMID: 35745378 PMCID: PMC9229712 DOI: 10.3390/nano12122039] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/23/2022] [Accepted: 06/08/2022] [Indexed: 01/27/2023]
Abstract
Flexible electronic textiles are the future of wearable technology with a diverse application potential inspired by the Internet of Things (IoT) to improve all aspects of wearer life by replacing traditional bulky, rigid, and uncomfortable wearable electronics. The inherently prominent characteristics exhibited by textile substrates make them ideal candidates for designing user-friendly wearable electronic textiles for high-end variant applications. Textile substrates (fiber, yarn, fabric, and garment) combined with nanostructured electroactive materials provide a universal pathway for the researcher to construct advanced wearable electronics compatible with the human body and other circumstances. However, e-textiles are found to be vulnerable to physical deformation induced during repeated wash and wear. Thus, e-textiles need to be robust enough to withstand such challenges involved in designing a reliable product and require more attention for substantial advancement in stability and washability. As a step toward reliable devices, we present this comprehensive review of the state-of-the-art advances in substrate geometries, modification, fabrication, and standardized washing strategies to predict a roadmap toward sustainability. Furthermore, current challenges, opportunities, and future aspects of durable e-textiles development are envisioned to provide a conclusive pathway for researchers to conduct advanced studies.
Collapse
Affiliation(s)
| | - Eglė Kumpikaitė
- Department of Production Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentų Str. 56, LT-51424 Kaunas, Lithuania;
| |
Collapse
|
17
|
Polat EO, Cetin MM, Tabak AF, Bilget Güven E, Uysal BÖ, Arsan T, Kabbani A, Hamed H, Gül SB. Transducer Technologies for Biosensors and Their Wearable Applications. BIOSENSORS 2022; 12:385. [PMID: 35735533 PMCID: PMC9221076 DOI: 10.3390/bios12060385] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/16/2022] [Accepted: 05/27/2022] [Indexed: 05/17/2023]
Abstract
The development of new biosensor technologies and their active use as wearable devices have offered mobility and flexibility to conventional western medicine and personal fitness tracking. In the development of biosensors, transducers stand out as the main elements converting the signals sourced from a biological event into a detectable output. Combined with the suitable bio-receptors and the miniaturization of readout electronics, the functionality and design of the transducers play a key role in the construction of wearable devices for personal health control. Ever-growing research and industrial interest in new transducer technologies for point-of-care (POC) and wearable bio-detection have gained tremendous acceleration by the pandemic-induced digital health transformation. In this article, we provide a comprehensive review of transducers for biosensors and their wearable applications that empower users for the active tracking of biomarkers and personal health parameters.
Collapse
Affiliation(s)
- Emre Ozan Polat
- Faculty of Engineering and Natural Sciences, Kadir Has University, Cibali, Istanbul 34083, Turkey; (M.M.C.); (A.F.T.); (E.B.G.); (B.Ö.U.); (T.A.); (A.K.); (H.H.); (S.B.G.)
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Cho S, Chang T, Yu T, Lee CH. Smart Electronic Textiles for Wearable Sensing and Display. BIOSENSORS 2022; 12:bios12040222. [PMID: 35448282 PMCID: PMC9029731 DOI: 10.3390/bios12040222] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 05/13/2023]
Abstract
Increasing demand of using everyday clothing in wearable sensing and display has synergistically advanced the field of electronic textiles, or e-textiles. A variety of types of e-textiles have been formed into stretchy fabrics in a manner that can maintain their intrinsic properties of stretchability, breathability, and wearability to fit comfortably across different sizes and shapes of the human body. These unique features have been leveraged to ensure accuracy in capturing physical, chemical, and electrophysiological signals from the skin under ambulatory conditions, while also displaying the sensing data or other immediate information in daily life. Here, we review the emerging trends and recent advances in e-textiles in wearable sensing and display, with a focus on their materials, constructions, and implementations. We also describe perspectives on the remaining challenges of e-textiles to guide future research directions toward wider adoption in practice.
Collapse
Affiliation(s)
- Seungse Cho
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA;
| | - Taehoo Chang
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA;
| | - Tianhao Yu
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA;
| | - Chi Hwan Lee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA;
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA;
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA;
- Center for Implantable Devices, Purdue University, West Lafayette, IN 47907, USA
- Correspondence:
| |
Collapse
|
19
|
Abstract
Conductive polymers have attracted wide attention since their discovery due to their unique properties such as good electrical conductivity, thermal and chemical stability, and low cost. With different possibilities of preparation and deposition on surfaces, they present unique and tunable structures. Because of the ease of incorporating different elements to form composite materials, conductive polymers have been widely used in a plethora of applications. Their inherent mechanical tolerance limit makes them ideal for flexible devices, such as electrodes for batteries, artificial muscles, organic electronics, and sensors. As the demand for the next generation of (wearable) personal and flexible sensing devices is increasing, this review aims to discuss and summarize the recent manufacturing advances made on flexible electrochemical sensors.
Collapse
|
20
|
Ehrmann G, Blachowicz T, Homburg SV, Ehrmann A. Measuring Biosignals with Single Circuit Boards. Bioengineering (Basel) 2022; 9:bioengineering9020084. [PMID: 35200437 PMCID: PMC8869486 DOI: 10.3390/bioengineering9020084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 12/23/2022] Open
Abstract
To measure biosignals constantly, using textile-integrated or even textile-based electrodes and miniaturized electronics, is ideal to provide maximum comfort for patients or athletes during monitoring. While in former times, this was usually solved by integrating specialized electronics into garments, either connected to a handheld computer or including a wireless data transfer option, nowadays increasingly smaller single circuit boards are available, e.g., single-board computers such as Raspberry Pi or microcontrollers such as Arduino, in various shapes and dimensions. This review gives an overview of studies found in the recent scientific literature, reporting measurements of biosignals such as ECG, EMG, sweat and other health-related parameters by single circuit boards, showing new possibilities offered by Arduino, Raspberry Pi etc. in the mobile long-term acquisition of biosignals. The review concentrates on the electronics, not on textile electrodes about which several review papers are available.
Collapse
Affiliation(s)
- Guido Ehrmann
- Virtual Institute of Applied Research on Advanced Materials (VIARAM)
- Correspondence:
| | - Tomasz Blachowicz
- Institute of Physics—Center for Science and Education, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Sarah Vanessa Homburg
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany; (S.V.H.); (A.E.)
| | - Andrea Ehrmann
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany; (S.V.H.); (A.E.)
| |
Collapse
|
21
|
Trabelsi M, Mamun A, Klöcker M, Moulefera I, Pljonkin A, Elleuch K, Sabantina L. Magnetic Carbon Nanofiber Mats for Prospective Single Photon Avalanche Diode (SPAD) Sensing Applications. SENSORS (BASEL, SWITZERLAND) 2021; 21:7873. [PMID: 34883875 PMCID: PMC8659674 DOI: 10.3390/s21237873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/12/2021] [Accepted: 11/19/2021] [Indexed: 11/16/2022]
Abstract
Electrospinning enables simple and cost-effective production of magnetic nanofibers by adding nanoparticles to a polymer solution. In order to increase the electrical conductivity of such nanofibers, the carbonization process is crucial. In this study, the chemical and morphological properties of magnetic nanofiber mats prepared from polyacrylonitrile (PAN)/magnetite were investigated. In our previous studies, PAN/magnetite nanofiber mats were carbonized at 500 °C, 600 °C, and 800 °C. Here, PAN/magnetite nanofiber mats were carbonized at 1000 °C. The surface morphology of these PAN/magnetite nanofiber mats is not significantly different from nanofiber mats thermally treated at 800 °C and have remained relatively flexible at 1000 °C, which can be advantageous for various application fields. The addition of nanoparticles increased the average fiber diameter compared to pure PAN nanofiber mats and improved the dimensional stability during thermal processes. The high conductivity, the high magnetization properties, as well as shielding against electromagnetic interference of such carbonized nanofibers can be proposed for use in single photon avalanche diode (SPAD), where these properties are advantageous.
Collapse
Affiliation(s)
- Marah Trabelsi
- Ecole Nationale d’Ingénieurs de Sfax, Laboratory LGME, University of Sfax, Sfax 3038, Tunisia; (M.T.); (K.E.)
| | - Al Mamun
- Junior Research Group “Nanomaterials”, Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany;
| | - Michaela Klöcker
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany;
| | - Imane Moulefera
- L.M.A.E. Laboratory, Department of Process Engineering, Faculty of Science and Technology, University of Mustapha Stambouli, Mascara 29000, Algeria;
| | - Anton Pljonkin
- Institute of Computer Technology and Information Security, Southern Federal University (SFedU), 347900 Taganrog, Russia;
| | - Khaled Elleuch
- Ecole Nationale d’Ingénieurs de Sfax, Laboratory LGME, University of Sfax, Sfax 3038, Tunisia; (M.T.); (K.E.)
| | - Lilia Sabantina
- Junior Research Group “Nanomaterials”, Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany;
| |
Collapse
|