1
|
Liu Y, Gui Z, Yan D, Wang Z, Gao R, Han N, Chen J, Wu J, Ming D. Lower limb motor imagery EEG dataset based on the multi-paradigm and longitudinal-training of stroke patients. Sci Data 2025; 12:314. [PMID: 39984530 PMCID: PMC11845778 DOI: 10.1038/s41597-025-04618-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 02/11/2025] [Indexed: 02/23/2025] Open
Abstract
Motor dysfunction is one of the most significant sequelae of stroke, with lower limb impairment being a major concern for stroke patients. Motor imagery (MI) technology based on brain-computer interface (BCI) offers promising rehabilitation potential for stroke patients by activating motor-related brain areas. However, developing a robust BCI-MI system and uncovering the underlying mechanisms of neural plasticity during stroke recovery through such systems requires large-scale datasets. These datasets are particularly needed for accurate lower limb MI in stroke patients and for longitudinal data reflecting the rehabilitation process. This study addresses this gap by collecting EEG data from 27 stroke patients, covering two enhanced paradigms and three different time points. The dataset includes raw EEG signals, preprocessed data, and patient information. An initial analysis using CSP-SVM on the dataset yielded an average classification accuracy of 80.50%. We anticipate that this dataset will facilitate research into brain neuroplasticity in stroke patients, aid in the development of decoding algorithms for lower limb stroke, and contribute to the establishment of comprehensive stroke rehabilitation systems.
Collapse
Affiliation(s)
- Yuan Liu
- the Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China.
- the Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, 300384, China.
| | - Zhuolan Gui
- the Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- the Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, 300384, China
| | - De Yan
- the Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- the Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, 300384, China
| | - Zhuang Wang
- the Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- the Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, 300384, China
| | - Ruisi Gao
- the Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- the Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, 300384, China
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise & Health, Tianjin University of Sport, Tianjin, 300381, China
| | - Ningxin Han
- the Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- the Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, 300384, China
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise & Health, Tianjin University of Sport, Tianjin, 300381, China
| | - Junying Chen
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300370, China
- Department of Rehabilitation Medicine, Tianjin Huanhu Hospital, Tianjin, 300350, China
| | - Jialing Wu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, 300350, China.
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin, 300350, China.
| | - Dong Ming
- the Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China.
- the Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, 300384, China.
| |
Collapse
|
2
|
Zhou Y. User experience of lower extremity exoskeletons and its improvement methodologies: A narrative review. Proc Inst Mech Eng H 2024; 238:1052-1068. [PMID: 39552186 DOI: 10.1177/09544119241291194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
In this review, user experience (UX) of recent lower limb exoskeletons (LLEs) and its improvement methodologies are investigated. First, statistics based on standardised and custom UX evaluations are presented. It is indicated that, LLE users have positive UX, especially in the aspects of safety, dimension and effectiveness. Further, overall, UX levels of ankle and hip-knee exoskeletons are higher than those of other exoskeleton types; unilateral LLEs have higher mean UX levels than that of the bilateral ones. Then, design practices for improving UX are studied; the focused points are burden reduction and improvement of device fit. The former is achieved through lightweight design and approaches that reduce device's moment of inertia (MOI) at mechanical joints. Works on the latter refer to the endeavours to enhance static and dynamic fit; they mainly rely on the optimisations of human-robot interface (HRS) and endeavours to rectify misalignment of axes of mechanical and anatomic joints, respectively. The following section is control approaches to enhance wearing comfort level; it is mainly focused on adaptive, interaction and compensation-based controls. Finally, existing problems and future directions are stated and prospected respectively.
Collapse
Affiliation(s)
- Yuan Zhou
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
3
|
Gouret A, Le Bars S, Porssut T, Waszak F, Chokron S. Advancements in brain-computer interfaces for the rehabilitation of unilateral spatial neglect: a concise review. Front Neurosci 2024; 18:1373377. [PMID: 38784094 PMCID: PMC11111994 DOI: 10.3389/fnins.2024.1373377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
This short review examines recent advancements in neurotechnologies within the context of managing unilateral spatial neglect (USN), a common condition following stroke. Despite the success of brain-computer interfaces (BCIs) in restoring motor function, there is a notable absence of effective BCI devices for treating cerebral visual impairments, a prevalent consequence of brain lesions that significantly hinders rehabilitation. This review analyzes current non-invasive BCIs and technological solutions dedicated to cognitive rehabilitation, with a focus on visuo-attentional disorders. We emphasize the need for further research into the use of BCIs for managing cognitive impairments and propose a new potential solution for USN rehabilitation, by combining the clinical subtleties of this syndrome with the technological advancements made in the field of neurotechnologies.
Collapse
Affiliation(s)
- Alix Gouret
- Integrative Neuroscience and Cognition Center (INCC), CNRS, Université Paris Cité, Paris, France
- Research and Innovation Department, Capgemini Engineering, Paris, France
| | - Solène Le Bars
- Integrative Neuroscience and Cognition Center (INCC), CNRS, Université Paris Cité, Paris, France
- Research and Innovation Department, Capgemini Engineering, Paris, France
| | - Thibault Porssut
- Research and Innovation Department, Capgemini Engineering, Paris, France
| | - Florian Waszak
- Integrative Neuroscience and Cognition Center (INCC), CNRS, Université Paris Cité, Paris, France
| | - Sylvie Chokron
- Integrative Neuroscience and Cognition Center (INCC), CNRS, Université Paris Cité, Paris, France
- Research and Innovation Department, Capgemini Engineering, Paris, France
| |
Collapse
|
4
|
Ferrero L, Soriano-Segura P, Navarro J, Jones O, Ortiz M, Iáñez E, Azorín JM, Contreras-Vidal JL. Brain-machine interface based on deep learning to control asynchronously a lower-limb robotic exoskeleton: a case-of-study. J Neuroeng Rehabil 2024; 21:48. [PMID: 38581031 PMCID: PMC10996198 DOI: 10.1186/s12984-024-01342-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/15/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND This research focused on the development of a motor imagery (MI) based brain-machine interface (BMI) using deep learning algorithms to control a lower-limb robotic exoskeleton. The study aimed to overcome the limitations of traditional BMI approaches by leveraging the advantages of deep learning, such as automated feature extraction and transfer learning. The experimental protocol to evaluate the BMI was designed as asynchronous, allowing subjects to perform mental tasks at their own will. METHODS A total of five healthy able-bodied subjects were enrolled in this study to participate in a series of experimental sessions. The brain signals from two of these sessions were used to develop a generic deep learning model through transfer learning. Subsequently, this model was fine-tuned during the remaining sessions and subjected to evaluation. Three distinct deep learning approaches were compared: one that did not undergo fine-tuning, another that fine-tuned all layers of the model, and a third one that fine-tuned only the last three layers. The evaluation phase involved the exclusive closed-loop control of the exoskeleton device by the participants' neural activity using the second deep learning approach for the decoding. RESULTS The three deep learning approaches were assessed in comparison to an approach based on spatial features that was trained for each subject and experimental session, demonstrating their superior performance. Interestingly, the deep learning approach without fine-tuning achieved comparable performance to the features-based approach, indicating that a generic model trained on data from different individuals and previous sessions can yield similar efficacy. Among the three deep learning approaches compared, fine-tuning all layer weights demonstrated the highest performance. CONCLUSION This research represents an initial stride toward future calibration-free methods. Despite the efforts to diminish calibration time by leveraging data from other subjects, complete elimination proved unattainable. The study's discoveries hold notable significance for advancing calibration-free approaches, offering the promise of minimizing the need for training trials. Furthermore, the experimental evaluation protocol employed in this study aimed to replicate real-life scenarios, granting participants a higher degree of autonomy in decision-making regarding actions such as walking or stopping gait.
Collapse
Affiliation(s)
- Laura Ferrero
- Brain-Machine Interface Systems Lab, Miguel Hernández University of Elche, Elche, Spain.
- Instituto de Investigación en Ingeniería de Elche-I3E, Miguel Hernández University of Elche, Elche, Spain.
- International Affiliate NSF IUCRC BRAIN Site, Miguel Hernández University of Elche, Elche, Spain.
- NSF IUCRC BRAIN, University of Houston, Houston, USA.
- Non-Invasive Brain Machine Interface Systems, University of Houston, Houston, TX, USA.
| | - Paula Soriano-Segura
- Brain-Machine Interface Systems Lab, Miguel Hernández University of Elche, Elche, Spain
- Instituto de Investigación en Ingeniería de Elche-I3E, Miguel Hernández University of Elche, Elche, Spain
- International Affiliate NSF IUCRC BRAIN Site, Miguel Hernández University of Elche, Elche, Spain
| | - Jacobo Navarro
- NSF IUCRC BRAIN, University of Houston, Houston, USA
- International Affiliate NSF IUCRC BRAIN Site, Tecnológico de Monterrey, Monterrey, Mexico
- Non-Invasive Brain Machine Interface Systems, University of Houston, Houston, TX, USA
| | - Oscar Jones
- NSF IUCRC BRAIN, University of Houston, Houston, USA
- Non-Invasive Brain Machine Interface Systems, University of Houston, Houston, TX, USA
| | - Mario Ortiz
- Brain-Machine Interface Systems Lab, Miguel Hernández University of Elche, Elche, Spain
- Instituto de Investigación en Ingeniería de Elche-I3E, Miguel Hernández University of Elche, Elche, Spain
- International Affiliate NSF IUCRC BRAIN Site, Miguel Hernández University of Elche, Elche, Spain
| | - Eduardo Iáñez
- Brain-Machine Interface Systems Lab, Miguel Hernández University of Elche, Elche, Spain
- Instituto de Investigación en Ingeniería de Elche-I3E, Miguel Hernández University of Elche, Elche, Spain
- International Affiliate NSF IUCRC BRAIN Site, Miguel Hernández University of Elche, Elche, Spain
| | - José M Azorín
- Brain-Machine Interface Systems Lab, Miguel Hernández University of Elche, Elche, Spain
- Instituto de Investigación en Ingeniería de Elche-I3E, Miguel Hernández University of Elche, Elche, Spain
- International Affiliate NSF IUCRC BRAIN Site, Miguel Hernández University of Elche, Elche, Spain
- Valencian Graduate School and Research Network of Artificial Intelligence-valgrAI, Valencia, Spain
| | - José L Contreras-Vidal
- NSF IUCRC BRAIN, University of Houston, Houston, USA
- Non-Invasive Brain Machine Interface Systems, University of Houston, Houston, TX, USA
| |
Collapse
|
5
|
Ferrero L, Quiles V, Ortiz M, Iáñez E, Gil-Agudo Á, Azorín JM. Brain-computer interface enhanced by virtual reality training for controlling a lower limb exoskeleton. iScience 2023; 26:106675. [PMID: 37250318 PMCID: PMC10214472 DOI: 10.1016/j.isci.2023.106675] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 03/06/2023] [Accepted: 04/11/2023] [Indexed: 05/31/2023] Open
Abstract
This study explores the use of a brain-computer interface (BCI) based on motor imagery (MI) for the control of a lower limb exoskeleton to aid in motor recovery after a neural injury. The BCI was evaluated in ten able-bodied subjects and two patients with spinal cord injuries. Five able-bodied subjects underwent a virtual reality (VR) training session to accelerate training with the BCI. Results from this group were compared with a control group of five able-bodied subjects, and it was found that the employment of shorter training by VR did not reduce the effectiveness of the BCI and even improved it in some cases. Patients gave positive feedback about the system and were able to handle experimental sessions without reaching high levels of physical and mental exertion. These results are promising for the inclusion of BCI in rehabilitation programs, and future research should investigate the potential of the MI-based BCI system.
Collapse
Affiliation(s)
- Laura Ferrero
- Brain-Machine Interface System Lab, Miguel Hernández University of Elche, Elche, Spain
- Instituto de Investigación en Ingeniería de Elche-I3E, Miguel Hernández University of Elche, Elche, Spain
- The European University of Brain and Technology (NeurotechEU)
| | - Vicente Quiles
- Brain-Machine Interface System Lab, Miguel Hernández University of Elche, Elche, Spain
- Instituto de Investigación en Ingeniería de Elche-I3E, Miguel Hernández University of Elche, Elche, Spain
| | - Mario Ortiz
- Brain-Machine Interface System Lab, Miguel Hernández University of Elche, Elche, Spain
- Instituto de Investigación en Ingeniería de Elche-I3E, Miguel Hernández University of Elche, Elche, Spain
- The European University of Brain and Technology (NeurotechEU)
| | - Eduardo Iáñez
- Brain-Machine Interface System Lab, Miguel Hernández University of Elche, Elche, Spain
- Instituto de Investigación en Ingeniería de Elche-I3E, Miguel Hernández University of Elche, Elche, Spain
| | | | - José M. Azorín
- Brain-Machine Interface System Lab, Miguel Hernández University of Elche, Elche, Spain
- Instituto de Investigación en Ingeniería de Elche-I3E, Miguel Hernández University of Elche, Elche, Spain
- Valencian Graduate School and Research Network of Artificial Intelligence (valgrAI), Valencia, Spain
- The European University of Brain and Technology (NeurotechEU)
| |
Collapse
|
6
|
Wang F, Wen Y, Bi J, Li H, Sun J. A portable SSVEP-BCI system for rehabilitation exoskeleton in augmented reality environment. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
7
|
Saibene A, Caglioni M, Corchs S, Gasparini F. EEG-Based BCIs on Motor Imagery Paradigm Using Wearable Technologies: A Systematic Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:2798. [PMID: 36905004 PMCID: PMC10007053 DOI: 10.3390/s23052798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
In recent decades, the automatic recognition and interpretation of brain waves acquired by electroencephalographic (EEG) technologies have undergone remarkable growth, leading to a consequent rapid development of brain-computer interfaces (BCIs). EEG-based BCIs are non-invasive systems that allow communication between a human being and an external device interpreting brain activity directly. Thanks to the advances in neurotechnologies, and especially in the field of wearable devices, BCIs are now also employed outside medical and clinical applications. Within this context, this paper proposes a systematic review of EEG-based BCIs, focusing on one of the most promising paradigms based on motor imagery (MI) and limiting the analysis to applications that adopt wearable devices. This review aims to evaluate the maturity levels of these systems, both from the technological and computational points of view. The selection of papers has been performed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), leading to 84 publications considered in the last ten years (from 2012 to 2022). Besides technological and computational aspects, this review also aims to systematically list experimental paradigms and available datasets in order to identify benchmarks and guidelines for the development of new applications and computational models.
Collapse
Affiliation(s)
- Aurora Saibene
- Department of Informatics, Systems and Communication, University of Milano-Bicocca, Viale Sarca 336, 20126 Milano, Italy
- NeuroMI, Milan Center for Neuroscience, Piazza dell’Ateneo Nuovo 1, 20126 Milano, Italy
| | - Mirko Caglioni
- Department of Informatics, Systems and Communication, University of Milano-Bicocca, Viale Sarca 336, 20126 Milano, Italy
| | - Silvia Corchs
- NeuroMI, Milan Center for Neuroscience, Piazza dell’Ateneo Nuovo 1, 20126 Milano, Italy
- Department of Theoretical and Applied Sciences, University of Insubria, Via J. H. Dunant 3, 21100 Varese, Italy
| | - Francesca Gasparini
- Department of Informatics, Systems and Communication, University of Milano-Bicocca, Viale Sarca 336, 20126 Milano, Italy
- NeuroMI, Milan Center for Neuroscience, Piazza dell’Ateneo Nuovo 1, 20126 Milano, Italy
| |
Collapse
|
8
|
Zhou Y. Recent advances in wearable actuated ankle-foot orthoses: Medical effects, design, and control. Proc Inst Mech Eng H 2023; 237:163-178. [PMID: 36515408 DOI: 10.1177/09544119221142335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This paper presents a survey on recent advances of wearable actuated ankle-foot orthoses (AAFOs). First of all, their medical functions are investigated. From the short-term aspect, they lead to rectification of pathological gaits, reduction of metabolic cost, and improvement of gait performance. After AAFO-based walking training with sufficient time, free walking performance can be enhanced. Then, key design factors are studied. First, primary design parameters are investigated. Second, common actuators are analysed. Third, human-robot interaction (HRI), ergonomics, safety, and application places, are considered. In the following section, control technologies are reviewed from the aspects of rehabilitation stages, gait feature quantities, and controller characteristics. Finally, existing problems are discussed; development trends are prospected.
Collapse
Affiliation(s)
- Yuan Zhou
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
9
|
EEG-Based Empathic Safe Cobot. MACHINES 2022. [DOI: 10.3390/machines10080603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
An empathic collaborative robot (cobot) was realized through the transmission of fear from a human agent to a robot agent. Such empathy was induced through an electroencephalographic (EEG) sensor worn by the human agent, thus realizing an empathic safe brain-computer interface (BCI). The empathic safe cobot reacts to the fear and in turn transmits it to the human agent, forming a social circle of empathy and safety. A first randomized, controlled experiment involved two groups of 50 healthy subjects (100 total subjects) to measure the EEG signal in the presence or absence of a frightening event. The second randomized, controlled experiment on two groups of 50 different healthy subjects (100 total subjects) exposed the subjects to comfortable and uncomfortable movements of a collaborative robot (cobot) while the subjects’ EEG signal was acquired. The result was that a spike in the subject’s EEG signal was observed in the presence of uncomfortable movement. The questionnaires were distributed to the subjects, and confirmed the results of the EEG signal measurement. In a controlled laboratory setting, all experiments were found to be statistically significant. In the first experiment, the peak EEG signal measured just after the activating event was greater than the resting EEG signal (p < 10−3). In the second experiment, the peak EEG signal measured just after the uncomfortable movement of the cobot was greater than the EEG signal measured under conditions of comfortable movement of the cobot (p < 10−3). In conclusion, within the isolated and constrained experimental environment, the results were satisfactory.
Collapse
|