1
|
Behera S. Nonlinear electronic devices on single-layer CVD graphene for thermistors. NANOTECHNOLOGY 2024; 35:505710. [PMID: 39321822 DOI: 10.1088/1361-6528/ad7f5e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/25/2024] [Indexed: 09/27/2024]
Abstract
In this article, we present simple, cost-effective, passive (non-gated) electronic devices based on single-layer (SL) chemical vapor deposited (CVD) graphene that show nonlinear and asymmetric current-voltage characteristics (CVCs) at ambient temperatures. Al2O3-Ti-Au contacts to graphene results in a nonlinear resistance to achieve nonlinearity in the CVC. Upon transfer to polyethylene terephthalate, the CVD-grown SL graphene shows mobility of 6200 cm2V-1S-1. We have observed both thermoelectric effect and thermoresistive sensing in the fabricated devices such as voltage and temperature concerning change in electronic power and resistance through asymmetric and nonlinear CVC. The device is stable both at low and high voltages (±200 mV to ±4 V) and temperatures (4 K - 300 K). Graphene-based thermosensing devices can be ultra-thin, cost-effective, non-toxic/organic, flexible, and high-speed for integration into future complementary metal-oxide semiconductor (CMOS) interface, and wearable self-power electronics. A strong negative temeperature coefficent of resistance is demonstrated in the realized nonlinear graphene-integrated resistors for its application in NTC thermistors.
Collapse
Affiliation(s)
- Saraswati Behera
- Department of Microtechnology and Nanoscience (MC2), Chalmers University of Technology, SE 41296 Göteborg, Sweden
| |
Collapse
|
2
|
Gao J, Chakraborthy A, He S, Yang S, Afsarimanesh N, Nag A, Deng S. Graphene-Based Sensors for the Detection of Microorganisms in Food: A Review. BIOSENSORS 2023; 13:579. [PMID: 37366944 DOI: 10.3390/bios13060579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 06/28/2023]
Abstract
There is a constant need to maintain the quality of consumed food. In retrospect to the recent pandemic and other food-related problems, scientists have focused on the numbers of microorganisms that are present in different food items. As a result of changes in certain environmental factors such as temperature and humidity, there is a constant risk for the growth of harmful microorganisms, such as bacteria and fungi, in consumed food. This questions the edibility of the food items, and constant monitoring to avoid food poisoning-related diseases is required. Among the different nanomaterials used to develop sensors to detect microorganisms, graphene has been one of the primary materials due to its exceptional electromechanical properties. Graphene sensors are able to detect microorganisms in both a composite and non-composite manner, due to their excellent electrochemical characteristics such as their high aspect ratios, excellent charge transfer capacity and high electron mobility. The paper depicts the fabrication of some of these graphene-based sensors, and their utilization to detect bacteria, fungi and other microorganisms that are present in very small amounts in different food items. In addition to the classified manner of the graphene-based sensors, this paper also depicts some of the challenges that exist in current scenarios, and their possible remedies.
Collapse
Affiliation(s)
- Jingrong Gao
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Aniket Chakraborthy
- Faculty of Electrical and Computer Engineering, Technische Universität Dresden, 01062 Dresden, Germany
- Centre for Tactile Internet with Human-in-the-Loop (CeTI), Technische Universität Dresden, 01069 Dresden, Germany
| | - Shan He
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
- College of Engineering, IT & Environment, Charles Darwin University, Casuarina, NT 0810, Australia
- Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, SA 0810, Australia
| | - Song Yang
- Yihai Food Technology Co., Ltd., Ma'anshan 243000, China
| | - Nasrin Afsarimanesh
- School of Civil and Mechanical Engineering, Curtin University, Perth, WA 2605, Australia
| | - Anindya Nag
- Faculty of Electrical and Computer Engineering, Technische Universität Dresden, 01062 Dresden, Germany
- Centre for Tactile Internet with Human-in-the-Loop (CeTI), Technische Universität Dresden, 01069 Dresden, Germany
| | - Shanggui Deng
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|
3
|
Zhao A, Sun J, Liu Y. Understanding bacterial biofilms: From definition to treatment strategies. Front Cell Infect Microbiol 2023; 13:1137947. [PMID: 37091673 PMCID: PMC10117668 DOI: 10.3389/fcimb.2023.1137947] [Citation(s) in RCA: 139] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/09/2023] [Indexed: 04/08/2023] Open
Abstract
Bacterial biofilms are complex microbial communities encased in extracellular polymeric substances. Their formation is a multi-step process. Biofilms are a significant problem in treating bacterial infections and are one of the main reasons for the persistence of infections. They can exhibit increased resistance to classical antibiotics and cause disease through device-related and non-device (tissue) -associated infections, posing a severe threat to global health issues. Therefore, early detection and search for new and alternative treatments are essential for treating and suppressing biofilm-associated infections. In this paper, we systematically reviewed the formation of bacterial biofilms, associated infections, detection methods, and potential treatment strategies, aiming to provide researchers with the latest progress in the detection and treatment of bacterial biofilms.
Collapse
Affiliation(s)
- Ailing Zhao
- Department of Gastroenterology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Jiazheng Sun
- Department of Vasculocardiology, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Yipin Liu
- Department of Gastroenterology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
- *Correspondence: Yipin Liu,
| |
Collapse
|
4
|
Graphene-Based Materials in Dental Applications: Antibacterial, Biocompatible, and Bone Regenerative Properties. Int J Biomater 2023; 2023:8803283. [PMID: 36819211 PMCID: PMC9929215 DOI: 10.1155/2023/8803283] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 02/10/2023] Open
Abstract
Graphene-based materials have been shown to have advantageous properties in biomedical and dental applications due to their high mechanical, physiochemical, antibacterial, and stem cell differentiating properties. Although graphene-based materials have displayed appropriate biocompatible properties when used in implant materials for orthopedic applications, little research has been performed to specifically test the biocompatibility of graphene for dental applications. The oral environment, compared to the body, varies greatly and must be considered when evaluating biocompatibility requirements for dental applications. This review will discuss in vitro and in vivo studies that assess graphene's cytotoxicity, antibacterial properties, and cell differentiation ability to evaluate the overall biocompatibility of graphene-based materials for dental applications. Particle shape, size, and concentration were found to be major factors that affected overall biocompatibility of graphene.
Collapse
|