1
|
Lebel-Cormier MA, Boilard T, Bernier M, Beaulieu L. Multi-point calorimeter using distributed fiber Bragg gratings for small field dosimetry in radiotherapy. Med Phys 2024; 51:3758-3765. [PMID: 38295013 DOI: 10.1002/mp.16955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/25/2023] [Accepted: 01/08/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND The interest of using fiber Bragg gratings (FBGs) dosimeters in radiotherapy (RT) lies in their (i) microliter detection volume, (ii) customizable spatial resolution, (iii) multi-point dose measurement, (iv) real-time data acquisition and (v) insensitivity to Cherenkov light. These characteristics could prove very useful for characterizing dose distributions of small and nonstandard fields with high spatial resolution. PURPOSE We developed a multi-point FBGs dosimeter customized for small field RT dosimetry with a spatial resolution of ∼ $\sim$ 1 mm. METHODS The 3 cm-long multi-point dosimeter is made by embedding a 80μ m $\umu{\rm {m}}$ silica fiber containing an array of thirty (30) co-located ∼ $\sim$ 1 mm-long fs-written FBGs inside a plastic cylinder with an UV curing optical adhesive. With its higher thermal expansion coefficient, the plastic cylinder increases the sensitivity of the dosimeter by stretching the fiber containing the FBGs when the temperature rises slightly due to radiation energy deposition. Irradiations (2000 MU at 600 MU/min) were performed with a Varian TrueBeam linear accelerator. RESULTS The dose profile of a 2 × $ \times$ 2 cm2 $^{2}$ 6 MV beam was measured with a mean relative difference of 1.8% (excluding the penumbra region). The measured output factors for a 6 MV beam are in general agreement with the expected values within the experimental uncertainty (except for the 2 × $\,\times $ 2 cm2 $^{2}$ field). The detector response to different energy of photon and electron beams is within 5% of the mean response (0.068 ± 0.002 $0.068\pm 0.002$ pm/Gy). The calorimeter's post-irradiation thermal decay is in agreement with the theory. CONCLUSIONS An energy-independent small field calorimeter that allows dose profile and output factor measurements for RT using FBGs was developed, which, to our knowledge, has never been done before. This type of detector could prove really useful for small field dosimetry, but also potentially for MRI-LINAC since FBGs are insensitive to magnetic fields and for FLASH since FBGs have been used to measure doses up to 100 kGy.
Collapse
Affiliation(s)
- Marie-Anne Lebel-Cormier
- Centre Intégré de cancérologie and Axe Oncologie du CRCHU de Québec - Université Laval, CHU de Québec - Université Laval, Québec, Canada
- Centre de recherche sur le cancer, Université Laval, Québec, Canada
- Département de physique, de génie physique et d'optique, Université Laval, Québec, Canada
| | - Tommy Boilard
- Département de physique, de génie physique et d'optique, Université Laval, Québec, Canada
- Centre d'optique, photonique et lasers, Université Laval, Québec, Canada
| | - Martin Bernier
- Département de physique, de génie physique et d'optique, Université Laval, Québec, Canada
- Centre d'optique, photonique et lasers, Université Laval, Québec, Canada
| | - Luc Beaulieu
- Centre Intégré de cancérologie and Axe Oncologie du CRCHU de Québec - Université Laval, CHU de Québec - Université Laval, Québec, Canada
- Centre de recherche sur le cancer, Université Laval, Québec, Canada
- Département de physique, de génie physique et d'optique, Université Laval, Québec, Canada
| |
Collapse
|
2
|
Lebel-Cormier MA, Boilard T, Beaulieu L, Bernier M. Real-Time Temperature Correction of Medical Range Fiber Bragg Gratings Dosimeters. SENSORS (BASEL, SWITZERLAND) 2023; 23:886. [PMID: 36679681 PMCID: PMC9866060 DOI: 10.3390/s23020886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
The interest in fiber Bragg gratings dosimeters for radiotherapy dosimetry lies in their (i) submillimeter size, (ii) multi-points dose measurements, and (iii) customizable spatial resolution. However, since the radiation measurement relies on the thermal expansion of the surrounding polymer coating, such sensors are strongly temperature dependent, which needs to be accounted for; otherwise, the errors on measurements can be higher than the measurements themselves. In this paper, we test and compare four techniques for temperature compensation: two types of dual grating techniques using different coatings, a pre-irradiation and post-irradiation temperature drift technique, which is used for calorimetry, and finally, we developed a real-time interpolated temperature gradient for the multi-points dosimetry technique. We show that, over these four tested techniques, the last one outperforms the others and allows for real-time temperature correction when an array of 13 fiber Bragg gratings spatially extending over the irradiation zone is used. For a 20 Gy irradiation, this technique reduces the measurement errors from 200% to about 10%, making it suitable for a radiotherapy dose range. Temperature correction for medical low-dose range dosimetry is a first in our field and is essential for clinical FBG dosimetry applications.
Collapse
Affiliation(s)
- Marie-Anne Lebel-Cormier
- Département de Physique, de Génie Physique et d’Optique, Université Laval, Québec, QC G1V 0A6, Canada
- Centre de Recherche sur le Cancer, Université Laval, Québec, QC G1R 3S3, Canada
- CHU de Québec Université—Laval et CRCHU de Québec, Québec, QC G1R 2J6, Canada
| | - Tommy Boilard
- Département de Physique, de Génie Physique et d’Optique, Université Laval, Québec, QC G1V 0A6, Canada
- Centre d’Optique, Photonique et Laser (COPL), Université Laval, Québec, QC G1V 0A6, Canada
| | - Luc Beaulieu
- Département de Physique, de Génie Physique et d’Optique, Université Laval, Québec, QC G1V 0A6, Canada
- Centre de Recherche sur le Cancer, Université Laval, Québec, QC G1R 3S3, Canada
- CHU de Québec Université—Laval et CRCHU de Québec, Québec, QC G1R 2J6, Canada
| | - Martin Bernier
- Département de Physique, de Génie Physique et d’Optique, Université Laval, Québec, QC G1V 0A6, Canada
- Centre d’Optique, Photonique et Laser (COPL), Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
3
|
Morana A, Marin E, Lablonde L, Blanchet T, Robin T, Cheymol G, Laffont G, Boukenter A, Ouerdane Y, Girard S. Radiation Effects on Fiber Bragg Gratings: Vulnerability and Hardening Studies. SENSORS (BASEL, SWITZERLAND) 2022; 22:8175. [PMID: 36365872 PMCID: PMC9656723 DOI: 10.3390/s22218175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Fiber Bragg gratings (FBGs) are point optical fiber sensors that allow the monitoring of a diversity of environmental parameters, e.g., temperature or strain. Several research groups have studied radiation effects on the grating response, as they are implemented in harsh environments: high energy physics, space, and nuclear facilities. We report here the advances made to date in studies regarding the vulnerability and hardening of this sensor under radiation. First, we introduce its principle of operation. Second, the different grating inscription techniques are briefly illustrated as well as the differences among the various types. Then, we focus on the radiation effects induced on different FBGs. Radiation induces a shift in their Bragg wavelengths, which is a property serving to measure environmental parameters. This radiation-induced Bragg wavelength shift (RI-BWS) leads to a measurement error, whose amplitude and kinetics depend on many parameters: inscription conditions, fiber type, pre- or post-treatments, and irradiation conditions (nature, dose, dose rate, and temperature). Indeed, the radiation hardness of an FBG is not directly related to that of the fiber where it has been photo-inscribed by a laser. We review the influence of all these parameters and discuss how it is possible to manufacture FBGs with limited RI-BWS, opening the way to their implementation in radiation-rich environments.
Collapse
Affiliation(s)
- Adriana Morana
- UJM, CNRS, IOGS, Laboratoire Hubert Curien, University of Lyon, UMR 5516, 18 rue Prof. B. Lauras, F-42000 Saint-Etienne, France
| | - Emmanuel Marin
- UJM, CNRS, IOGS, Laboratoire Hubert Curien, University of Lyon, UMR 5516, 18 rue Prof. B. Lauras, F-42000 Saint-Etienne, France
| | | | - Thomas Blanchet
- CEA List, Université Paris-Saclay, F-91120 Palaiseau, France
| | | | - Guy Cheymol
- CEA, Service d’Études Analytiques et de Réactivité des Surfaces, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | | | - Aziz Boukenter
- UJM, CNRS, IOGS, Laboratoire Hubert Curien, University of Lyon, UMR 5516, 18 rue Prof. B. Lauras, F-42000 Saint-Etienne, France
| | - Youcef Ouerdane
- UJM, CNRS, IOGS, Laboratoire Hubert Curien, University of Lyon, UMR 5516, 18 rue Prof. B. Lauras, F-42000 Saint-Etienne, France
| | - Sylvain Girard
- UJM, CNRS, IOGS, Laboratoire Hubert Curien, University of Lyon, UMR 5516, 18 rue Prof. B. Lauras, F-42000 Saint-Etienne, France
| |
Collapse
|