1
|
Brüll L, Santuz A, Mersmann F, Bohm S, Schwenk M, Arampatzis A. Spatiotemporal modulation of a common set of muscle synergies during unpredictable and predictable gait perturbations in older adults. J Exp Biol 2024; 227:jeb247271. [PMID: 38506185 PMCID: PMC11058090 DOI: 10.1242/jeb.247271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/14/2024] [Indexed: 03/21/2024]
Abstract
Muscle synergies as functional low-dimensional building blocks of the neuromotor system regulate the activation patterns of muscle groups in a modular structure during locomotion. The purpose of the current study was to explore how older adults organize locomotor muscle synergies to counteract unpredictable and predictable gait perturbations during the perturbed steps and the recovery steps. Sixty-three healthy older adults (71.2±5.2 years) participated in the study. Mediolateral and anteroposterior unpredictable and predictable perturbations during walking were introduced using a treadmill. Muscle synergies were extracted from the electromyographic activity of 13 lower limb muscles using Gaussian non-negative matrix factorization. The four basic synergies responsible for unperturbed walking (weight acceptance, propulsion, early swing and late swing) were preserved in all applied gait perturbations, yet their temporal recruitment and muscle contribution in each synergy were modified (P<0.05). These modifications were observed for up to four recovery steps and were more pronounced (P<0.05) following unpredictable perturbations. The recruitment of the four basic walking synergies in the perturbed and recovery gait cycles indicates a robust neuromotor control of locomotion by using activation patterns of a few and well-known muscle synergies with specific adjustments within the synergies. The selection of pre-existing muscle synergies while adjusting the time of their recruitment during challenging locomotor conditions may improve the effectiveness to deal with perturbations and promote the transfer of adaptation between different kinds of perturbations.
Collapse
Affiliation(s)
- Leon Brüll
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
- Network Aging Research, Heidelberg University, 69115 Heidelberg, Germany
| | - Alessandro Santuz
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Falk Mersmann
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Sebastian Bohm
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Michael Schwenk
- Network Aging Research, Heidelberg University, 69115 Heidelberg, Germany
- Institute of Sports and Sports Sciences, Heidelberg University, 69120 Heidelberg, Germany
- Department of Sport Science, Human Performance Research Center, University of Konstanz, 78464 Konstanz, Germany
| | - Adamantios Arampatzis
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| |
Collapse
|
2
|
Ren X, Kebbach M, Bruhn S, Yang Q, Lin H, Bader R, Tischer T, Lutter C. Barefoot walking is more stable in the gait of balance recovery in older adults. BMC Geriatr 2022; 22:904. [PMID: 36434546 PMCID: PMC9700923 DOI: 10.1186/s12877-022-03628-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Perturbation-based balance training on a treadmill is an emerging method of gait stability training with a characteristic task nature that has had positive and sustained effects on balance recovery strategies and fall reduction. Little is known about the effects produced by shod and barefoot walking. We aimed to investigate which is more appropriate, shod or barefoot walking, for perturbation-based balance training in older adults. METHODS Fourteen healthy older adults (age: 68.29 ± 3.41 years; body height: 1.76 ± 0.10 m; body mass: 81.14 ± 14.52 kg) performed normal and trip-like perturbed walking trials, shod and barefoot, on a treadmill of the Gait Real-time Analysis Interactive Lab. The marker trajectories data were processed by Human Body Model software embedded in the Gait Offline Analysis Tool. The outcomes of stride length variability, stride time variability, step width variability, and swing time variability were computed and statistically analyzed by a two-way repeated-measures analysis of variance (ANOVA) based on gait pattern (normal gait versus perturbed recovery gait) and footwear condition (shod versus barefoot). RESULTS Footwear condition effect (p = 0.0310) and gait pattern by footwear condition interaction effect (p = 0.0055) were only observed in swing time variability. Gait pattern effects were detected in all four outcomes of gait variability. CONCLUSIONS Swing time variability, independent of gait speed, could be a valid indicator to differentiate between footwear conditions. The lower swing time variability in perturbed recovery gait suggests that barefoot walking may be superior to shod walking for perturbation-based balance training in older adults.
Collapse
Affiliation(s)
- Xiping Ren
- College of Physical Education and Health Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321000, China.
- Department of Orthopedics, Biomechanics and Implant Technology Research Laboratory, Rostock University Medical Center, Doberaner Strasse 142, 18057, Rostock, Germany.
| | - Maeruan Kebbach
- Department of Orthopedics, Biomechanics and Implant Technology Research Laboratory, Rostock University Medical Center, Doberaner Strasse 142, 18057, Rostock, Germany
| | - Sven Bruhn
- Institute of Sport Science, University of Rostock, 18051, Rostock, Germany
| | - Qining Yang
- Department of Joint Surgery, The Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321099, China
| | - Huijie Lin
- School of Physical Education, Taizhou University, Linhai, 318000, China
| | - Rainer Bader
- Department of Orthopedics, Biomechanics and Implant Technology Research Laboratory, Rostock University Medical Center, Doberaner Strasse 142, 18057, Rostock, Germany
| | - Thomas Tischer
- Department of Orthopedics, Biomechanics and Implant Technology Research Laboratory, Rostock University Medical Center, Doberaner Strasse 142, 18057, Rostock, Germany
| | - Christoph Lutter
- Department of Orthopedics, Biomechanics and Implant Technology Research Laboratory, Rostock University Medical Center, Doberaner Strasse 142, 18057, Rostock, Germany
| |
Collapse
|
3
|
Ren X, Lutter C, Kebbach M, Bruhn S, Bader R, Tischer T. Lower extremity joint compensatory effects during the first recovery step following slipping and stumbling perturbations in young and older subjects. BMC Geriatr 2022; 22:656. [PMID: 35948887 PMCID: PMC9367084 DOI: 10.1186/s12877-022-03354-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/29/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The lower extremity may play a crucial role in compensating for gait perturbations. The study aimed to explore the mechanism of perturbation compensation by investigating the gait characteristics and lower extremity joint moment effects in young (YS) and older subjects (OS) during the first recovery gait following slipping (slipping_Rec1) and stumbling (stumbling_Rec1). METHOD An automatic perturbation-triggered program was developed using D-Flow software based on the Gait Real-time Analysis Interactive Lab to induce the two aforementioned perturbations. Marker trajectories and ground reaction forces were recorded from 15 healthy YS (age: 26.53 ± 3.04 years; body height: 1.73 ± 0.07 m; body mass: 66.81 ± 11.44 kg) and 15 healthy OS (age: 68.33 ± 3.29 years; body height: 1.76 ± 0.10 m; body mass: 81.13 ± 13.99 kg). The Human Body Model was used to compute the variables of interest. One-way analysis of variance and independent samples t-test statistical analyses were performed. RESULTS In slipping_Rec1 and stumbling_Rec1, the change in gait pattern was mainly reflected in a significant increase in step width, no alterations in step length and stance/swing ratio were revealed. Based on perturbed task specificity, lower extremity joint moments increased or decreased at specific phases of the gait cycle in both YS and OS in slipping_Rec1 and stumbling_Rec1 compared to normal gait. The two perturbed gaits reflected the respective compensatory requirements for the lower extremity joints, with both sagittal and frontal joint moments producing compensatory effects. The aging effect was not reflected in the gait pattern, but rather in the hip extension moment during the initial stance of slipping_Rec1. CONCLUSIONS Slipping appears to be more demanding for gait recovery than stumbling. Gait perturbation compensatory mechanisms for OS should concentrate on ankle strategy in the frontal plane and counter-rotation strategy around the hip.
Collapse
Affiliation(s)
- Xiping Ren
- College of Physical Education and Health Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321000, China.
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopaedics, Rostock University Medical Centre, Doberaner Strasse 142, 18057, Rostock, Germany.
| | - Christoph Lutter
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopaedics, Rostock University Medical Centre, Doberaner Strasse 142, 18057, Rostock, Germany
| | - Maeruan Kebbach
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopaedics, Rostock University Medical Centre, Doberaner Strasse 142, 18057, Rostock, Germany
| | - Sven Bruhn
- Institute of Sport Science, University of Rostock, 18051, Rostock, Germany
| | - Rainer Bader
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopaedics, Rostock University Medical Centre, Doberaner Strasse 142, 18057, Rostock, Germany
| | - Thomas Tischer
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopaedics, Rostock University Medical Centre, Doberaner Strasse 142, 18057, Rostock, Germany
| |
Collapse
|
4
|
Taylor Z, Walsh GS, Hawkins H, Inacio M, Esser P. Perturbations during Gait: A Systematic Review of Methodologies and Outcomes. SENSORS (BASEL, SWITZERLAND) 2022; 22:5927. [PMID: 35957484 PMCID: PMC9371403 DOI: 10.3390/s22155927] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Despite extensive literature regarding laboratory-based balance perturbations, there is no up-to-date systematic review of methods. This systematic review aimed to assess current perturbation methods and outcome variables used to report participant biomechanical responses during walking. METHODS Web of Science, CINAHL, and PubMed online databases were searched, for records from 2015, the last search was on 30th of May 2022. Studies were included where participants were 18+ years, with or without clinical conditions, conducted in non-hospital settings. Reviews were excluded. Participant descriptive, perturbation method, outcome variables and results were extracted and summarised. Bias was assessed using the Appraisal tool for Cross-sectional Studies risk of bias assessment tool. Qualitative analysis was performed as the review aimed to investigate methods used to apply perturbations. RESULTS 644 records were identified and 33 studies were included, totaling 779 participants. The most frequent method of balance perturbation during gait was by means of a treadmill translation. The most frequent outcome variable collected was participant step width, closely followed by step length. Most studies reported at least one spatiotemporal outcome variable. All included studies showed some risk of bias, generally related to reporting of sampling approaches. Large variations in perturbation type, duration and intensity and outcome variables were reported. CONCLUSIONS This review shows the wide variety of published laboratory perturbation methods. Moreover, it demonstrates the significant impact on outcome measures of a study based on the type of perturbation used. REGISTRATION PROSPERO ID: CRD42020211876.
Collapse
Affiliation(s)
- Zoe Taylor
- Centre for Movement, Occupation and Rehabilitation Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
- Department of Sport Health Sciences and Social Work, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Gregory S. Walsh
- Centre for Movement, Occupation and Rehabilitation Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
- Department of Sport Health Sciences and Social Work, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Hannah Hawkins
- Centre for Movement, Occupation and Rehabilitation Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
- Department of Sport Health Sciences and Social Work, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Mario Inacio
- Centre for Movement, Occupation and Rehabilitation Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
- Research Centre in Sport Sciences, Health Sciences and Human Development, University Institute of Maia, 4475-690 Maia, Portugal
| | - Patrick Esser
- Centre for Movement, Occupation and Rehabilitation Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
- Department of Sport Health Sciences and Social Work, Oxford Brookes University, Oxford OX3 0BP, UK
| |
Collapse
|