1
|
Bakirova LI, Voronkov GS, Lyubopytov VS, Butt MA, Khonina SN, Stepanov IV, Grakhova EP, Kutluyarov RV. Micro-Ring Resonator-Based Tunable Vortex Beam Emitter. MICROMACHINES 2023; 15:34. [PMID: 38258153 PMCID: PMC10820895 DOI: 10.3390/mi15010034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024]
Abstract
Light beams bearing orbital angular momentum (OAM) are used in various scientific and engineering applications, such as microscopy, laser material processing, and optical tweezers. Precise topological charge control is crucial for efficiently using vortex beams in different fields, such as information encoding in optical communications and sensor systems. This work presents a novel method for optimizing an emitting micro-ring resonator (MRR) for emitting vortex beams with variable orders of OAM. The MRR consists of a ring waveguide with periodic structures side-coupled to a bus waveguide. The resonator is tunable due to the phase change material Sb2Se3 deposited on the ring. This material can change from amorphous to crystalline while changing its refractive index. In the amorphous phase, it is 3.285 + 0i, while in the transition to the crystalline phase, it reaches 4.050 + 0i at emission wavelength 1550 nm. We used this property to control the vortex beam topological charge. In our study, we optimized the distance between the bus waveguide and the ring waveguide, the bending angle, and the width of the bus waveguide. The optimality criterion was chosen to maximize the flux density of the radiated energy emitted by the resonator. The numerical simulation results proved our method. The proposed approach can be used to optimize optical beam emitters carrying OAM for various applications.
Collapse
Affiliation(s)
- Liaisan I. Bakirova
- School of Photonics Engineering and Research Advances (SPhERA), Ufa University of Science and Technology, 32, Z. Validi St., 450076 Ufa, Russia; (L.I.B.); (G.S.V.); (I.V.S.); (E.P.G.)
| | - Grigory S. Voronkov
- School of Photonics Engineering and Research Advances (SPhERA), Ufa University of Science and Technology, 32, Z. Validi St., 450076 Ufa, Russia; (L.I.B.); (G.S.V.); (I.V.S.); (E.P.G.)
| | - Vladimir S. Lyubopytov
- School of Photonics Engineering and Research Advances (SPhERA), Ufa University of Science and Technology, 32, Z. Validi St., 450076 Ufa, Russia; (L.I.B.); (G.S.V.); (I.V.S.); (E.P.G.)
| | | | - Svetlana N. Khonina
- Samara National Research University, 443086 Samara, Russia;
- IPSI-RAS-Branch of the FSRC “Crystallography and Photonics” RAS, 443001 Samara, Russia
| | - Ivan V. Stepanov
- School of Photonics Engineering and Research Advances (SPhERA), Ufa University of Science and Technology, 32, Z. Validi St., 450076 Ufa, Russia; (L.I.B.); (G.S.V.); (I.V.S.); (E.P.G.)
| | - Elizaveta P. Grakhova
- School of Photonics Engineering and Research Advances (SPhERA), Ufa University of Science and Technology, 32, Z. Validi St., 450076 Ufa, Russia; (L.I.B.); (G.S.V.); (I.V.S.); (E.P.G.)
| | - Ruslan V. Kutluyarov
- School of Photonics Engineering and Research Advances (SPhERA), Ufa University of Science and Technology, 32, Z. Validi St., 450076 Ufa, Russia; (L.I.B.); (G.S.V.); (I.V.S.); (E.P.G.)
| |
Collapse
|
2
|
Wei Z, Li S, Xie L, Deng X, Wang Z, Cheng X. On-chip ultracompact multimode vortex beam emitter based on vertical modes. OPTICS EXPRESS 2022; 30:36863-36872. [PMID: 36258607 DOI: 10.1364/oe.473192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Free-space orbital angular momentum (OAM) communication is considered as one of the potential alternative on-chip optical interconnect solutions. The number of OAM modes determines the capacity of high-speed communication. However, existing integrated vortex beam emitters have a constraint relationship between the number of OAM modes and the emitter size, rendering it difficult to emit more OAM modes with a small-sized emitter. In view of the above, this study proposes an on-chip ultracompact multimode vortex beam emitter based on vertical modes, which permits more OAM modes without requiring an increase in the size of the emitter. Vertical modes in large-aspect-ratio waveguides are pointed out to enable multimode microrings with small radii because high-order vertical modes can maintain almost the same horizontal wave vector as that of the fundamental mode. Four-mode and five-mode vortex beam emitters with the same radius of 1.5 µm are designed and the effectiveness of these emitters is verified through simulation. Furthermore, a high-efficiency and low-crosstalk approach for high-order vertical mode coupling by varying the waveguide height is presented. This research not only promotes further integration of on-chip optical interconnection, but also provides a new strategy for optical waveguide mode selection in photonic integrated circuits design.
Collapse
|