1
|
Wei S, Zhao J, Ke S, Zou M, Han Q, Cui G. Optimized detection of calcium ion in serum using constant potential coulometry with metastable liquid-liquid contact doping enhanced PEDOT: PSS ink. Bioelectrochemistry 2025; 163:108903. [PMID: 39808884 DOI: 10.1016/j.bioelechem.2025.108903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/04/2025] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
Highly stable calcium ion selective electrodes (Ca2+-ISEs) were developed by drop-casting a layer of poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT: PSS) as an ion-to-electron transfer layer onto Au electrode. The conductive PEDOT: PSS ink was prepared using a metastable liquid-liquid contact (MLLC) doping method, which induced phase separation, removed excess PSS, and significantly enhanced charge transfer kinetics and conductivity. The resulting Ca2+-ISEs exhibited excellent electrochemical performance. Potentiometric studies revealed a significant sensitivity of 33.1 ± 0.98 mV/decade (N = 3) with a high potential stability of 3.16 ± 2.53 μV/h. Importantly, Ca2+-ISEs combined with the constant potential coulometry method, the lower detection limit was optimized to 8.527 × 10-8 M (LOD = 3σ/s, N = 3). The performance of the Ca2+-ISE system was evaluated in inactivated fetal bovine serum using constant potential coulometry, demonstrating the highest measurement accuracy compared to potentiometric and chronoamperometric. The enhanced PEDOT: PSS-MLLC based Ca2+-ISEs combined with the constant potential coulometry method developed in this research demonstrate considerable potential for clinical applications in blood ion analysis.
Collapse
Affiliation(s)
- Suyun Wei
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Jie Zhao
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China.
| | - Shaojun Ke
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Mingjia Zou
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Qingze Han
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Guofeng Cui
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China; Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| |
Collapse
|
2
|
Keresten V, Lazarev F, Mikhelson K. Transfer of Sodium Ion across Interface between Na +-Selective Electrode Membrane and Aqueous Electrolyte Solution: Can We Use Nernst Equation If Current Flows through Electrode? MEMBRANES 2024; 14:74. [PMID: 38668102 PMCID: PMC11052482 DOI: 10.3390/membranes14040074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 04/28/2024]
Abstract
Electrochemical impedance and chronopotentiometric measurements with Na+-selective solvent polymeric (PVC) membranes containing a neutral ionophore and a cation exchanger revealed low-frequency resistance, which is ascribed to Na+ ion transfer across the interface between the membrane and aqueous solution. The attribution is based on the observed regular dependence of this resistance on the concentration of Na+ in solutions. The respective values of the exchange current densities were found to be significantly larger than the currents flowing through ion-selective electrodes (ISEs) during an analysis in non-zero-current mode. This fact suggests that the interfacial electrochemical equilibrium is not violated by the current flow and implies that the Nernst equation can be applied to interpret the data obtained in non-zero-current mode, e.g., constant potential coulometry.
Collapse
Affiliation(s)
| | | | - Konstantin Mikhelson
- Chemistry Institute, St. Petersburg State University, 26 Universiteskij Pr., Stary Peterhof, 198504 St. Petersburg, Russia; (V.K.); (F.L.)
| |
Collapse
|
3
|
Han T, Song T, Bao Y, Wang W, He Y, Liu Z, Gan S, Han D, Bobacka J, Niu L. Fast and sensitive coulometric signal transduction for ion-selective electrodes by utilizing a two-compartment cell. Talanta 2023; 262:124623. [PMID: 37244238 DOI: 10.1016/j.talanta.2023.124623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 05/29/2023]
Abstract
Here, we propose a fast and sensitive coulometric signal transduction method for ion-selective electrodes (ISEs) by utilizing a two-compartment cell. A potassium ion-selective electrode (K+-ISE) was connected as reference electrode (RE) and placed in the sample compartment. A glassy carbon (GC) electrode coated with poly(3,4-ethylenedioxythiophene) (GC/PEDOT), or reduced graphene oxide (GC/RGO), was connected as working electrode (WE) and placed in the detection compartment together with a counter electrode (CE). The two compartments were connected with an Ag/AgCl wire. The measured cumulated charge was amplified by increasing the capacitance of the WE. The observed slope of the cumulated charge with respect to the change of the logarithm of the K+ ion activity was linearly proportional to the capacitance of the GC/PEDOT and GC/RGO, estimated from impedance spectra. Furthermore, the sensitivity of the coulometric signal transduction using a commercial K+-ISE with internal filling solution as RE and GC/RGO as WE allowed to decrease the response time while still being able to detect a 0.2% change in K+ concentration. The coulometric method utilizing a two-compartment cell was found to be feasible for the determination of K+ concentrations in serum. The advantage of this two-compartment approach, compared to the coulometric transduction described earlier, was that no current passed through the K+-ISE that was connected as RE. Therefore, current-induced polarization of the K+-ISE was avoided. Furthermore, since the GCE/PEDOT and GCE/RGO (used as WE) had a low impedance, the response time of the coulometric response decreased from minutes to seconds.
Collapse
Affiliation(s)
- Tingting Han
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, C/o School of Chemistry and Chemical Engineering, School of Civil Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Tao Song
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, PR China
| | - Yu Bao
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, C/o School of Chemistry and Chemical Engineering, School of Civil Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Wei Wang
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, C/o School of Chemistry and Chemical Engineering, School of Civil Engineering, Guangzhou University, Guangzhou, 510006, PR China.
| | - Ying He
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, C/o School of Chemistry and Chemical Engineering, School of Civil Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Zhenbang Liu
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, C/o School of Chemistry and Chemical Engineering, School of Civil Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Shiyu Gan
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, C/o School of Chemistry and Chemical Engineering, School of Civil Engineering, Guangzhou University, Guangzhou, 510006, PR China.
| | - Dongxue Han
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, C/o School of Chemistry and Chemical Engineering, School of Civil Engineering, Guangzhou University, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Anti-Drug Technology Center of Guangdong Province, Guangzhou, 510230, PR China
| | - Johan Bobacka
- Åbo Akademi University, Johan Gadolin Process Chemistry Centre, Laboratory of Molecular Science and Engineering, Henriksgatan 2, FI-20500, Turku/Åbo, Finland
| | - Li Niu
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, C/o School of Chemistry and Chemical Engineering, School of Civil Engineering, Guangzhou University, Guangzhou, 510006, PR China
| |
Collapse
|
4
|
Keresten V, Mikhelson K. Voltammetric Ion Sensing with Ionophore-Based Ion-Selective Electrodes Containing Internal Aqueous Solution, Improving Lifetime of Sensors. MEMBRANES 2022; 12:1048. [PMID: 36363603 PMCID: PMC9699433 DOI: 10.3390/membranes12111048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
The possibility of voltammetric ion sensing is demonstrated, for the first time, for ion-selective electrodes (ISEs) containing an internal aqueous solution. ISEs selective to calcium, lithium and potassium ions are used as model systems. The internal solution of the ISEs contains a chloride salt of the respective cation and a ferrocenemethanol or ferrocyanide/ferricyanide redox couple. A platinum wire is used as the internal reference electrode. It is shown, theoretically and experimentally, that the dependence of oxidation and reduction peak potentials on the sample composition obeys the Nernst law, while the peak currents virtually do not depend on the sample composition. Thus, the electrode behavior is similar to that reported by Bakker's group for solid contact ISEs with ultra-thin membranes (200-300 nm). It is shown that the use of classical ISEs with relatively thick membranes (100-300 µm) and internal aqueous solution allows for the sensor lifetime of about one month. It is also shown that use of a suitable background electrolyte allows for improvement of the detection limits in voltammetric measurements with ISEs.
Collapse
|
5
|
Han T, Song T, Bao Y, Sun Z, Ma Y, He Y, Gan S, Jiang D, Han D, Bobacka J, Niu L. Amperometric response of solid-contact ion-selective electrodes utilizing a two-compartment cell and a redox couple in solution. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|