1
|
Cheng P, Qi S, Guan X, Wei X, Li F, Zeng G. Forward calculation of airborne gamma 3D radiation fields based on rapid coupling method of point kernel integrals. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2025; 282:107603. [PMID: 39708539 DOI: 10.1016/j.jenvrad.2024.107603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
Airborne gamma ray spectrum detection technology is an effective means to measure the concentration and spatial distribution of natural radionuclides in environmental media such as surface rocks and soil during aviation flight. Therefore, it is vital to fully explore the radiation information related to mineralization in airborne gamma spectrometry data and explore the dose distribution law of gamma radiation field of radionuclides in the detection area. This paper is based on the theoretical calculation model of ground-air interface gamma radiation field. After discretizing the equivalent surface source of the geological body with irregular and uniformly distributed radionuclides into a grid, it is divided into differential surface sources of uniform size, density, and isotropy. A theoretical calculation model for the spatial radiation field of differential surface sources at the ground-air interface has been derived. Finally, a rapid calculation program for the 3D radiation field of irregular surface sources coupled with point sources has been developed using the Qt framework. The accuracy and efficiency of the program were tested through three examples. For a single regular surface source, the rectangular surface source exhibited higher consistency at most detection points. The average relative deviation was 9.183%. In the case of a circular surface source, the dose rate values between the two methods deviated more significantly in the edge regions but less so in the central region. The average relative deviation was 12.765%. When comparing the calculation data of two irregular surface source models, the rapid calculation program was dozens of times faster than the SuperMC program. The maximum relative deviation was 38.245%, the minimum relative deviation was 5.416%, and the calculation accuracy was high. The average relative deviation was 21.912%. On several irregular surface source models, the relative deviations were relatively large. The maximum relative deviation reached 52.234%, the minimum was 12.305%, and the average relative deviation was 28.126%. This study can provide a certain theoretical reference for researchers in related fields, promoting the development and application of airborne gamma radiation field technology.
Collapse
Affiliation(s)
- Peng Cheng
- College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu, 610000, China; State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Shuang Qi
- College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu, 610000, China
| | - Xian Guan
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Xing Wei
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Fei Li
- College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu, 610000, China; Applied Nuclear Technology in Geosciences Key Laboratory of Sichuan Province, Chengdu, 610000, China; Department of Physics, Universitat Politècnica de Catalunya, 08028, Barcelona, Spain.
| | - Guoqiang Zeng
- College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu, 610000, China; Applied Nuclear Technology in Geosciences Key Laboratory of Sichuan Province, Chengdu, 610000, China.
| |
Collapse
|
2
|
Hu Y, Lyu Z, Fan P, Xu T, Wang S, Liu Y, Ma T. A Wide Energy Range and 4π-View Gamma Camera with Interspaced Position-Sensitive Scintillator Array and Embedded Heavy Metal Bars. SENSORS (BASEL, SWITZERLAND) 2023; 23:953. [PMID: 36679750 PMCID: PMC9861986 DOI: 10.3390/s23020953] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
(1) Background: Gamma cameras have wide applications in industry, including nuclear power plant monitoring, emergency response, and homeland security. The desirable properties of a gamma camera include small weight, good resolution, large field of view (FOV), and wide imageable source energy range. Compton cameras can have a 4π FOV but have limited sensitivity at low energy. Coded-aperture gamma cameras are operatable at a wide photon energy range but typically have a limited FOV and increased weight due to the thick heavy metal collimators and shielding. In our lab, we previously proposed a 4π-view gamma imaging approach with a 3D position-sensitive detector, with which each detector element acts as the collimator for other detector elements. We presented promising imaging performance for 99mTc, 18F, and 137Cs sources. However, the imaging performance for middle- and high-energy sources requires further improvement. (2) Methods: In this study, we present a new gamma camera design to achieve satisfactory imaging performance in a wide gamma energy range. The proposed gamma camera consists of interspaced bar-shaped GAGG (Ce) crystals and tungsten absorbers. The metal bars enhance collimation for high-energy gamma photons without sacrificing the FOV. We assembled a gamma camera prototype and conducted experiments to evaluate the gamma camera’s performance for imaging 57Co, 137Cs, and 60Co point sources. (3) Results: Results show that the proposed gamma camera achieves a positioning accuracy of <3° for all gamma energies. It can clearly resolve two 137Cs point sources with 10° separation, two 57Co and two 60Co point sources with 20° separation, as well as a 2 × 3 137Cs point-source array with 20° separation. (4) Conclusions: We conclude that the proposed gamma camera design has comprehensive merits, including portability, 4π-view FOV, and good angular resolution across a wide energy range. The presented approach has promising potential in nuclear security applications.
Collapse
Affiliation(s)
- Yifan Hu
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
- Key Laboratory of Particle & Radiation Imaging, Ministry of Education, Beijing 100084, China
- Institute for Precision Medicine, Tsinghua University, Beijing 100084, China
| | - Zhenlei Lyu
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
- Key Laboratory of Particle & Radiation Imaging, Ministry of Education, Beijing 100084, China
- Institute for Precision Medicine, Tsinghua University, Beijing 100084, China
| | - Peng Fan
- Beijing Institute of Spacecraft System Engineering, Beijing 100094, China
| | - Tianpeng Xu
- State Nuclear Security Technology Center, Beijing 102401, China
| | - Shi Wang
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
- Key Laboratory of Particle & Radiation Imaging, Ministry of Education, Beijing 100084, China
| | - Yaqiang Liu
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
- Key Laboratory of Particle & Radiation Imaging, Ministry of Education, Beijing 100084, China
| | - Tianyu Ma
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
- Key Laboratory of Particle & Radiation Imaging, Ministry of Education, Beijing 100084, China
- Institute for Precision Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Marques L, Félix L, Cruz G, Coelho V, Caetano J, Vale A, Cruz C, Alves L, Vaz P. Neutron and Gamma-Ray Detection System Coupled to a Multirotor for Screening of Shipping Container Cargo. SENSORS (BASEL, SWITZERLAND) 2022; 23:329. [PMID: 36616926 PMCID: PMC9824015 DOI: 10.3390/s23010329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
In order to detect special nuclear materials and other radioactive materials in Security and Defense scenarios, normally, a combination of neutron and gamma-ray detection systems is used. In particular, to avoid illicit traffic of special nuclear materials and radioactive sources/materials, radiation portal monitors are placed at seaports to inspect shipping-container cargo. Despite their large volume (high efficiency), these detection systems are expensive, and therefore only a fraction of these containers are inspected. In this work, a novel mobile radiation detection system is presented, based on an EJ-200 plastic scintillator for the detection of gamma rays and beta particles, and a neutron detector EJ-426HD plastic scintillator (with 6Li) embedded in a compact and modular moderator. The use of silicon photomultipliers in both detectors presented advantages such as lightweight, compactness, and low power consumption. The developed detection system was integrated in a highly maneuverable multirotor. Monte Carlo simulations were validated by laboratory measurements and field tests were performed using real gamma-ray and neutron sources. The detection and localization within one meter was achieved using a maximum likelihood estimation algorithm for 137Cs sources (4 MBq), as well as the detection of 241Am-beryllium (1.45 GBq) source placed inside the shipping container.
Collapse
Affiliation(s)
- Luís Marques
- Centro de Investigação da Academia da Força Aérea, Academia da Força Aérea, Instituto Universitário Militar, Granja do Marquês, 2715-021 Pêro Pinheiro, Portugal
| | - Luís Félix
- Centro de Investigação da Academia da Força Aérea, Academia da Força Aérea, Instituto Universitário Militar, Granja do Marquês, 2715-021 Pêro Pinheiro, Portugal
| | - Gonçalo Cruz
- Centro de Investigação da Academia da Força Aérea, Academia da Força Aérea, Instituto Universitário Militar, Granja do Marquês, 2715-021 Pêro Pinheiro, Portugal
| | - Vasco Coelho
- Centro de Investigação da Academia da Força Aérea, Academia da Força Aérea, Instituto Universitário Militar, Granja do Marquês, 2715-021 Pêro Pinheiro, Portugal
| | - João Caetano
- Centro de Investigação da Academia da Força Aérea, Academia da Força Aérea, Instituto Universitário Militar, Granja do Marquês, 2715-021 Pêro Pinheiro, Portugal
| | - Alberto Vale
- Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Carlos Cruz
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139.7), 2695-066 Lisboa, Portugal
| | - Luís Alves
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139.7), 2695-066 Lisboa, Portugal
| | - Pedro Vaz
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139.7), 2695-066 Lisboa, Portugal
| |
Collapse
|
4
|
Parajuli RK, Sakai M, Parajuli R, Tashiro M. Development and Applications of Compton Camera-A Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:7374. [PMID: 36236474 PMCID: PMC9573429 DOI: 10.3390/s22197374] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/08/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
The history of Compton cameras began with the detection of radiation sources originally for applications in astronomy. A Compton camera is a promising γ-ray detector that operates in the wide energy range of a few tens of keV to MeV. The γ-ray detection method of a Compton camera is based on Compton scattering kinematics, which is used to determine the direction and energy of the γ-rays without using a mechanical collimator. Although the Compton camera was originally designed for astrophysical applications, it was later applied in medical imaging as well. Moreover, its application in environmental radiation measurements is also under study. Although a few review papers regarding Compton cameras have been published, they either focus very specifically on the detectors used in such cameras or the particular applications of Compton cameras. Thus, the aim of this paper is to review the features and types of Compton cameras and introduce their applications, associated imaging algorithms, improvement scopes, and their future aspects.
Collapse
Affiliation(s)
- Raj Kumar Parajuli
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba 263-8555, Japan
- Gunma University Heavy Ion Medical Center, Gunma University, 3-39-22 Showa-machi, Maebashi 371-8511, Japan
| | - Makoto Sakai
- Gunma University Heavy Ion Medical Center, Gunma University, 3-39-22 Showa-machi, Maebashi 371-8511, Japan
| | | | - Mutsumi Tashiro
- Gunma University Heavy Ion Medical Center, Gunma University, 3-39-22 Showa-machi, Maebashi 371-8511, Japan
| |
Collapse
|
5
|
An internet of radiation sensor system (IoRSS) to detect radioactive sources out of regulatory control. Sci Rep 2022; 12:7195. [PMID: 35505070 PMCID: PMC9065099 DOI: 10.1038/s41598-022-11264-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/20/2022] [Indexed: 11/09/2022] Open
Abstract
A radioactive source that is not under regulatory control, either because it has never been under regulatory control or because it has been abandoned, lost, misplaced, stolen, or otherwise transferred without proper authorization, is considered an orphan source. Orphan sources are usually gathered as scrap metal because of their heavy metallic containers. Melting an orphan source with scrap metal produces contaminated recycled metal and waste; the consequences will be extremely serious for humans and the environment, affecting the economy and social stability. In this paper, we propose and develop an Internet of Radiation Sensor System (IoRSS) to detect radioactive sources out of regulatory control in scrap metal recycling and production facilities. It is a complete IoT system consisting of a network of wirelessly connected radiometric devices that optimizes the detection, localization, and identification of radioactive sources by integrating data from multiple portable radiation detectors. The proposed IoRSS system creates a robust and flexible network architecture along with advanced data fusion algorithms that combine information from many detectors. The IoRSS system provides advanced search and monitoring capabilities in a large coverage area and in difficult operational environments.
Collapse
|