1
|
Park YJ, Her MJ, Jeong Y, Choi DJ, Kim DU, Lim MG, Hong MS, Kwon HS, Yu K, Han S. Fully tunable Fabry-Pérot cavity based on MEMS Sagnac loop reflector with ultra-low static power consumption. MICROSYSTEMS & NANOENGINEERING 2024; 10:119. [PMID: 39209803 PMCID: PMC11362568 DOI: 10.1038/s41378-024-00728-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/29/2024] [Accepted: 04/04/2024] [Indexed: 09/04/2024]
Abstract
The Fabry-Pérot interferometer, a fundamental component in optoelectronic systems, offers interesting applications such as sensors, lasers, and filters. In this work, we show a tunable Fabry-Pérot cavity consisting of tunable Sagnac loop reflectors (SLRs) and phase shifters based on electrostatic microelectromechanical (MEMS) actuator. The fabrication process of the device is compatible with the standard wafer-level silicon photonics fabrication processes. This electrostatic actuation mechanism provides well-balanced, scalable pathways for efficient tuning methodologies. The extinction ratio of the continuously tunable SLRs' reflectivity is larger than 20 dB. Full 2π phase shifting is achieved, and response times of all the components are less than 25 μs. Both actuators have extremely low static power, measuring under 20 fW and the energy needed for tuning is both below 20 pJ.
Collapse
Affiliation(s)
- Young Jae Park
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Man Jae Her
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Youngjae Jeong
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Dong Ju Choi
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Dong Uk Kim
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Min Gi Lim
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Myung Seok Hong
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Hyug Su Kwon
- Agency for Defense Development, Daejeon, Republic of Korea
| | - Kyoungsik Yu
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Sangyoon Han
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
| |
Collapse
|
2
|
Seo MJ, Yoo JC. Dynamic Focusing (DF) Cone-Based Omnidirectional Fingertip Pressure Sensor with High Sensitivity in a Wide Pressure Range. SENSORS (BASEL, SWITZERLAND) 2023; 23:8450. [PMID: 37896544 PMCID: PMC10611043 DOI: 10.3390/s23208450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023]
Abstract
It is essential to detect pressure from a robot's fingertip in every direction to ensure efficient and secure grasping of objects with diverse shapes. Nevertheless, creating a simple-designed sensor that offers cost-effective and omnidirectional pressure sensing poses substantial difficulties. This is because it often requires more intricate mechanical solutions than when designing non-omnidirectional pressure sensors of robot fingertips. This paper introduces an innovative pressure sensor for fingertips. It utilizes a uniquely designed dynamic focusing cone to visually detect pressure with omnidirectional sensitivity. This approach enables cost-effective measurement of pressure from all sides of the fingertip. The experimental findings demonstrate the great potential of the newly introduced sensor. Its implementation is both straightforward and uncomplicated, offering high sensitivity (0.07 mm/N) in all directions and a broad pressure sensing range (up to 40 N) for robot fingertips.
Collapse
Affiliation(s)
- Moo-Jung Seo
- Department of Electrical and Computer Engineering, College of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Jae-Chern Yoo
- Department of Electrical and Computer Engineering, College of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| |
Collapse
|
3
|
Jiang W, Ma Z, Cao F, Hu L, Bao L, Chang P, Xu C, Lv X, Xie Y. Label-free integrated microfluidic plasmonic biosensor from vertical-cavity surface-emitting lasers for SARS-CoV-2 receptor binding domain protein detection. OPTICS EXPRESS 2023; 31:12138-12149. [PMID: 37157379 DOI: 10.1364/oe.486605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The nanoplasmonic sensor of the nanograting array has a remarkable ability in label-free and rapid biological detection. The integration of the nanograting array with the standard vertical-cavity surface-emitting lasers (VCSEL) platform can achieve a compact and powerful solution to provide on-chip light sources for biosensing applications. Here, a high sensitivity and label-free integrated VCSELs sensor was developed as a suitable analysis technique for COVID-19 specific receptor binding domain (RBD) protein. The gold nanograting array is integrated on VCSELs to realize the integrated microfluidic plasmonic biosensor of on-chip biosensing. The 850 nm VCSELs are used as a light source to excite the localized surface plasmon resonance (LSPR) effect of the gold nanograting array to detect the concentration of attachments. The refractive index sensitivity of the sensor is 2.99 × 106 nW/RIU. The aptamer of RBD was modified on the surface of the gold nanograting to detect the RBD protein successfully. The biosensor has high sensitivity and a wide detection range of 0.50 ng/mL - 50 µg/mL. This VCSELs biosensor provides an integrated, portable, and miniaturized idea for biomarker detection.
Collapse
|
4
|
Mireles J, Sauceda Á, Jiménez A, Ramos M, Gonzalez-Landaeta R. Design and Development of a MOEMS Accelerometer Using SOI Technology. MICROMACHINES 2023; 14:mi14010231. [PMID: 36677292 PMCID: PMC9867042 DOI: 10.3390/mi14010231] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 06/01/2023]
Abstract
The micro-electromechanical system (MEMS) sensors are suitable devices for vibrational analysis in complex systems. The Fabry-Pérot interferometer (FPI) is used due to its high sensitivity and immunity to electromagnetic interference (EMI). Here, we present the design, fabrication, and characterization of a silicon-on-insulator (SOI) MEMS device, which is embedded in a metallic package and connected to an optical fiber. This integrated micro-opto-electro-mechanical system (MOEMS) sensor contains a mass structure and handle layers coupled with four designed springs built on the device layer. An optical reading system using an FPI is used for displacement interrogation with a demodulation technique implemented in LabVIEW®. The results indicate that our designed MOEMS sensor exhibits a main resonant frequency of 1274 Hz with damping ratio of 0.0173 under running conditions up to 7 g, in agreement with the analytical model. Our experimental findings show that our designed and fabricated MOEMS sensor has the potential for engineering application to monitor vibrations under high-electromagnetic environmental conditions.
Collapse
Affiliation(s)
- José Mireles
- Applied Science and Technology Research Center, Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, 450 Avenida del Charro, Ciudad Juárez 32310, Mexico
- Electrical and Computer Engineering Department, Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, 450 Avenida del Charro, Ciudad Juárez 32310, Mexico
| | - Ángel Sauceda
- Applied Science and Technology Research Center, Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, 450 Avenida del Charro, Ciudad Juárez 32310, Mexico
- Electrical and Computer Engineering Department, Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, 450 Avenida del Charro, Ciudad Juárez 32310, Mexico
| | - Abimael Jiménez
- Applied Science and Technology Research Center, Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, 450 Avenida del Charro, Ciudad Juárez 32310, Mexico
- Electrical and Computer Engineering Department, Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, 450 Avenida del Charro, Ciudad Juárez 32310, Mexico
| | - Manuel Ramos
- Applied Science and Technology Research Center, Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, 450 Avenida del Charro, Ciudad Juárez 32310, Mexico
- Department of Physics and Mathematics, Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, 450 Avenida del Charro, Ciudad Juárez 32310, Mexico
| | - Rafael Gonzalez-Landaeta
- Electrical and Computer Engineering Department, Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, 450 Avenida del Charro, Ciudad Juárez 32310, Mexico
| |
Collapse
|
5
|
Belkheir M, Rouissat M, Mokaddem A, Doumi B, Boutaous A. Studying the effect of polymethyl methacrylate polymer opticals fibers (POFs) on the performance of composite materials based on the polyether ether ketone (PEEK) polymer matrix. EMERGENT MATERIALS 2022; 5:2075-2085. [PMID: 35692304 PMCID: PMC9171084 DOI: 10.1007/s42247-022-00392-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/24/2022] [Indexed: 05/05/2023]
Abstract
More recently, various techniques have been implemented for the sensors manufacturing purpose, such as fiber Bragg gratings fibers (FBG) that allows variable core refractive index suitable for a large scale of measurements types, fiber optic evanescent waves (FOEW) for water parameters measurement, microstructured and crystal photonic optical fibers, polymers optical fiber (POFs), and so on. In this perspective, the objective of this work is to study the reliability and the origin of the resistance of each fiber-matrix interface of the composite materials PMMA/PEEK, Topas/PEEK, and Topas-Zeonex/PEEK. The genetic simulation is based on the probabilistic approach of Weibull to calculate the damage at the interface by crossing the two damages of the matrix and the fiber respectively. The results show that the PMMA/PEEK composite is the most resistant to the mechanical stresses applied compared to those Topas/PEEK and Topas-Zeonex/PEEK; these results were confirmed by the level of damage to the interface observed for the studied materials. The performed calculations are in good agreement with the analytical results of Cox, where he demonstrated that Young's modulus of fibers have an important influence on the shear strength of the fiber-matrix interface of composite materials. Based on the obtained results, the present study gives the opportunity for the proposed materials (PMMA/PEEK and Zeonex/PEEK) to be as potential candidates for the smart digital applications and telecoms aims.
Collapse
Affiliation(s)
- Mohammed Belkheir
- Laboratoire d’Instrumentation Et Matériaux Avancés, Centre Universitaire Nour Bachir El-Bayadh, 32000 El-Bayadh, Algeria
| | - Mehdi Rouissat
- Laboratoire STIC (Université de Tlemcen), Tlemce, Algeria
- Centre Universitaire Nour Bachir El-Bayadh, 32000 El-Bayadh, Algeria
| | - Allel Mokaddem
- Laboratoire d’Instrumentation Et Matériaux Avancés, Centre Universitaire Nour Bachir El-Bayadh, 32000 El-Bayadh, Algeria
| | - Bendouma Doumi
- Laboratoire d’Instrumentation Et Matériaux Avancés, Centre Universitaire Nour Bachir El-Bayadh, 32000 El-Bayadh, Algeria
- Département Technologie Des Matériaux, Faculté de Physique, Université des Sciences et de la Technologie, USTO-MB, Oran, Algeria
| | - Ahmed Boutaous
- Faculty of Sciences, Department of Physics, Dr Tahar Moulay University of Saïda, 20000 Saïda, Algeria
| |
Collapse
|
6
|
Detection of Volatile Organic Compounds by Using MEMS Sensors. SENSORS 2022; 22:s22114102. [PMID: 35684724 PMCID: PMC9185245 DOI: 10.3390/s22114102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022]
Abstract
We report on the deployment of MEMS static bifurcation (DC) sensors for the detection of volatile organic compounds (VOCs): hydrogen sulfide and formaldehyde. We demonstrate a sensor that can detect as low as a few ppm of hydrogen sulfide. We also demonstrate a sensor array that can selectively detect formaldehyde in the presence of benzene, a closely related interferent. Toward that end, we investigate the sensitivity and selectivity of two detector polymers—polyaniline (PANI) and poly (2,5-dimethyl aniline) (P25DMA)—to both gases. A semiautomatic method is developed to functionalize individual sensors and sensor arrays with the detector polymers. We found that the sensor array can selectively sense 1 ppm of formaldehyde in the presence of benzene.
Collapse
|