Xie C, Wang L, Yang J, Guo J. A subject transfer neural network fuses Generator and Euclidean alignment for EEG-based motor imagery classification.
J Neurosci Methods 2025;
420:110483. [PMID:
40350042 DOI:
10.1016/j.jneumeth.2025.110483]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/14/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
BACKGROUND
Brain-computer interface (BCI) facilitates the connection between human brain and computer, enabling individuals to control external devices indirectly through cognitive processes. Although it has great development prospects, the significant difference in EEG signals among individuals hinders users from further utilizing the BCI system.
NEW METHOD
Addressing this difference and improving BCI classification accuracy remain key challenges. In this paper, we propose a transfer learning model based on deep learning to transfer the data distribution from the source domain to the target domain, named a subject transfer neural network combining the Generator with Euclidean alignment (ST-GENN). It consists of three parts: 1) Align the original EEG signals in the Euclidean space; 2) Send the aligned data to the Generator to obtain the transferred features; 3) Utilize the Convolution-attention-temporal (CAT) classifier to classify the transferred features.
RESULTS
The model is validated on BCI competition IV 2a, BCI competition IV 2b and SHU datasets to evaluate its classification performance, and the results are 82.85 %, 86.28 % and 67.2 % for the three datasets, respectively.
COMPARISON WITH EXISTING METHODS
The results have been shown to be robust to subject variability, with the average accuracy of the proposed method outperforming baseline algorithms by ranging from 2.03 % to 15.43 % on the 2a dataset, from 0.86 % to 10.16 % on the 2b dataset and from 3.3 % to 17.9 % on the SHU dataset.
CONCLUSIONS FOR RESEARCH ARTICLES
The advantage of our model lies in its ability to effectively transfer the experience and knowledge of the source domain data to the target domain, thus bridging the gap between them. Our method can improve the practicability of MI-BCI systems.
Collapse