1
|
Villani M, Avaltroni P, Scordo G, Rubeca D, Kreynin P, Bereziy E, Berger D, Cappellini G, Sylos-Labini F, Lacquaniti F, Ivanenko Y. Evaluation of EMG patterns in children during assisted walking in the exoskeleton. Front Neurosci 2024; 18:1461323. [PMID: 39513047 PMCID: PMC11541598 DOI: 10.3389/fnins.2024.1461323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/30/2024] [Indexed: 11/15/2024] Open
Abstract
While exoskeleton technology is becoming more and more common for gait rehabilitation in children with neurological disorders, evaluation of gait performance still faces challenges and concerns. The reasoning behind evaluating the spinal locomotor output is that, while exoskeleton's guidance forces create the desired walking kinematics, they also affect sensorimotor interactions, which may lead to an abnormal spatiotemporal integration of activity in particular spinal segments and the risk of abnormalities in gait recovery. Therefore, traditional indicators based on kinematic or kinetic characteristics for optimizing exoskeleton controllers for gait rehabilitation may be supplemented by performance measures associated with the neural control mechanisms. The purpose of this study on a sample of children was to determine the basic features of lower limb muscle activity and to implement a method for assessing the neuromechanics of spinal locomotor output during exoskeleton-assisted gait. To this end, we assessed the effects of a robotic exoskeleton (ExoAtlet Bambini) on gait performance, by recording electromyographic activity of leg muscles and analyzing the corresponding spinal motor pool output. A slower walking setting (about 0.2 m/s) was chosen on the exoskeleton. The results showed that, even with slower walking, the level of muscle activation was roughly comparable during exoskeleton-assisted gait and normal walking. This suggests that, despite full assistance for leg movements, the child's locomotor controllers can interpret step-related afferent information promoting essential activity in leg muscles. This is most likely explained by the active nature of stepping in the exoskeleton (the child was not fully relaxed, experienced full foot loading and needed to maintain the upper trunk posture). In terms of the general muscle activity patterns, we identified notable variations for the proximal leg muscles, coactivation of the lumbar and sacral motor pools, and weak propulsion from the distal extensors at push-off. These changes led to the lack of characteristic lumbosacral oscillations of the center of motoneuron activity, normally associated with the pendulum mechanism of bipedal walking. This work shows promise as a useful technique for analyzing exoskeleton performance to help children develop their natural gait pattern and to guide system optimization in the future for inclusion into clinical care.
Collapse
Affiliation(s)
- Margherita Villani
- Laboratory of Neuromotor Physiology, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Rome, Italy
| | - Priscilla Avaltroni
- Laboratory of Neuromotor Physiology, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Rome, Italy
- Department of Systems Medicine and Center of Space Biomedicine, University of Rome Tor Vergata, Rome, Italy
| | - Giulia Scordo
- Laboratory of Neuromotor Physiology, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Rome, Italy
- Department of Systems Medicine and Center of Space Biomedicine, University of Rome Tor Vergata, Rome, Italy
| | - Damiana Rubeca
- Laboratory of Neuromotor Physiology, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Rome, Italy
- Department of Systems Medicine and Center of Space Biomedicine, University of Rome Tor Vergata, Rome, Italy
| | | | | | - Denise Berger
- Laboratory of Neuromotor Physiology, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Rome, Italy
- Department of Systems Medicine and Center of Space Biomedicine, University of Rome Tor Vergata, Rome, Italy
| | - Germana Cappellini
- Laboratory of Neuromotor Physiology, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Rome, Italy
- Department of Systems Medicine and Center of Space Biomedicine, University of Rome Tor Vergata, Rome, Italy
| | - Francesca Sylos-Labini
- Laboratory of Neuromotor Physiology, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Rome, Italy
- Department of Systems Medicine and Center of Space Biomedicine, University of Rome Tor Vergata, Rome, Italy
| | - Francesco Lacquaniti
- Laboratory of Neuromotor Physiology, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Rome, Italy
- Department of Systems Medicine and Center of Space Biomedicine, University of Rome Tor Vergata, Rome, Italy
| | - Yury Ivanenko
- Laboratory of Neuromotor Physiology, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
2
|
Borzelli D, De Marchis C, Quercia A, De Pasquale P, Casile A, Quartarone A, Calabrò RS, d’Avella A. Muscle Synergy Analysis as a Tool for Assessing the Effectiveness of Gait Rehabilitation Therapies: A Methodological Review and Perspective. Bioengineering (Basel) 2024; 11:793. [PMID: 39199751 PMCID: PMC11351442 DOI: 10.3390/bioengineering11080793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
According to the modular hypothesis for the control of movement, muscles are recruited in synergies, which capture muscle coordination in space, time, or both. In the last two decades, muscle synergy analysis has become a well-established framework in the motor control field and for the characterization of motor impairments in neurological patients. Altered modular control during a locomotion task has been often proposed as a potential quantitative metric for characterizing pathological conditions. Therefore, the purpose of this systematic review is to analyze the recent literature that used a muscle synergy analysis of neurological patients' locomotion as an indicator of motor rehabilitation therapy effectiveness, encompassing the key methodological elements to date. Searches for the relevant literature were made in Web of Science, PubMed, and Scopus. Most of the 15 full-text articles which were retrieved and included in this review identified an effect of the rehabilitation intervention on muscle synergies. However, the used experimental and methodological approaches varied across studies. Despite the scarcity of studies that investigated the effect of rehabilitation on muscle synergies, this review supports the utility of muscle synergies as a marker of the effectiveness of rehabilitative therapy and highlights the challenges and open issues that future works need to address to introduce the muscle synergies in the clinical practice and decisional process.
Collapse
Affiliation(s)
- Daniele Borzelli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (A.Q.); (A.C.)
- Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy;
| | | | - Angelica Quercia
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (A.Q.); (A.C.)
| | - Paolo De Pasquale
- IRCCS Centro Neurolesi “Bonino Pulejo”, 98124 Messina, Italy; (P.D.P.); (A.Q.); (R.S.C.)
| | - Antonino Casile
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (A.Q.); (A.C.)
| | - Angelo Quartarone
- IRCCS Centro Neurolesi “Bonino Pulejo”, 98124 Messina, Italy; (P.D.P.); (A.Q.); (R.S.C.)
| | | | - Andrea d’Avella
- Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy;
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
3
|
Scano A, Lanzani V, Brambilla C, d’Avella A. Transferring Sensor-Based Assessments to Clinical Practice: The Case of Muscle Synergies. SENSORS (BASEL, SWITZERLAND) 2024; 24:3934. [PMID: 38931719 PMCID: PMC11207859 DOI: 10.3390/s24123934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/10/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024]
Abstract
Sensor-based assessments in medical practice and rehabilitation include the measurement of physiological signals such as EEG, EMG, ECG, heart rate, and NIRS, and the recording of movement kinematics and interaction forces. Such measurements are commonly employed in clinics with the aim of assessing patients' pathologies, but so far some of them have found full exploitation mainly for research purposes. In fact, even though the data they allow to gather may shed light on physiopathology and mechanisms underlying motor recovery in rehabilitation, their practical use in the clinical environment is mainly devoted to research studies, with a very reduced impact on clinical practice. This is especially the case for muscle synergies, a well-known method for the evaluation of motor control in neuroscience based on multichannel EMG recordings. In this paper, considering neuromotor rehabilitation as one of the most important scenarios for exploiting novel methods to assess motor control, the main challenges and future perspectives for the standard clinical adoption of muscle synergy analysis are reported and critically discussed.
Collapse
Affiliation(s)
- Alessandro Scano
- Institute of Intelligent Industrial Systems and Technologies for Advanced Manufacturing (STIIMA), Italian Council of National Research (CNR), 20133 Milan, Italy; (V.L.); (C.B.)
| | - Valentina Lanzani
- Institute of Intelligent Industrial Systems and Technologies for Advanced Manufacturing (STIIMA), Italian Council of National Research (CNR), 20133 Milan, Italy; (V.L.); (C.B.)
| | - Cristina Brambilla
- Institute of Intelligent Industrial Systems and Technologies for Advanced Manufacturing (STIIMA), Italian Council of National Research (CNR), 20133 Milan, Italy; (V.L.); (C.B.)
| | - Andrea d’Avella
- Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia, Via Ardeatina 306-354, 00179 Rome, Italy;
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| |
Collapse
|
4
|
Ivanenko Y, Shapkova EY, Petrova DA, Kleeva DF, Lebedev MA. Exoskeleton gait training with spinal cord neuromodulation. Front Hum Neurosci 2023; 17:1194702. [PMID: 37250689 PMCID: PMC10213721 DOI: 10.3389/fnhum.2023.1194702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 04/27/2023] [Indexed: 05/31/2023] Open
Abstract
Neuromodulating the locomotor network through spinal cord electrical stimulation (SCES) is effective for restoring function in individuals with gait deficits. However, SCES alone has limited effectiveness without concurrent locomotor function training that enhances activity-dependent plasticity of spinal neuronal networks by sensory feedback. This mini review discusses recent developments in using combined interventions, such as SCES added to exoskeleton gait training (EGT). To develop personalized therapies, it is crucial to assess the state of spinal circuitry through a physiologically relevant approach that identifies individual characteristics of spinal cord function to develop person-specific SCES and EGT. The existing literature suggests that combining SCES and EGT to activate the locomotor network can have a synergistic rehabilitative effect on restoring walking abilities, somatic sensation, and cardiovascular and bladder function in paralyzed individuals.
Collapse
Affiliation(s)
| | - Elena Y. Shapkova
- Saint-Petersburg State Research Institute of Phthisiopulmonology, Saint Petersburg, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, Saint Petersburg, Russia
| | - Daria A. Petrova
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Daria F. Kleeva
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Mikhail A. Lebedev
- Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, Russia
| |
Collapse
|