1
|
Romeni S, De Luca D, Pierantoni L, Toni L, Marino G, Moccia S, Micera S. A computational model to design wide field-of-view optic nerve neuroprostheses. iScience 2024; 27:111321. [PMID: 39628568 PMCID: PMC11612796 DOI: 10.1016/j.isci.2024.111321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/03/2024] [Accepted: 10/30/2024] [Indexed: 12/06/2024] Open
Abstract
Retinal stimulation (RS) allows restoring vision in blind patients, but it covers only a narrow region of the visual field. Optic nerve stimulation (ONS) has the potential to produce visual perceptions spanning the whole visual field, but it produces very irregular phosphenes. We introduced a geometrical model converting retinal and optic nerve firing rates into visual perceptions and vice versa and a method to estimate the best perceptions elicitable through an electrode configuration. We then compared in silico ONS and RS through simulated prosthetic vision of static and dynamic visual scenes. Both simulations and SPV experiments showed that it might be possible to reconstruct natural visual scenes with ONS and RS, and that ONS wide field-of-view allows the perception of more detail in dynamic scenarios than RS. Our findings suggest that ONS could represent an interesting approach for vision restoration and that our model can be used to optimize it.
Collapse
Affiliation(s)
- Simone Romeni
- Modular Implantable Neurotechnologies Laboratory, Università Vita-Salute San Raffaele & Scuola Superiore Sant’Anna, Milan, Italy
- Bertarelli Foundation Chair in Translational Neural Engineering, Center for Neuroprosthetics and Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Daniela De Luca
- The Biorobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Luca Pierantoni
- The Biorobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, Pisa, Italy
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Rome, Italy
| | - Laura Toni
- Modular Implantable Neurotechnologies Laboratory, Università Vita-Salute San Raffaele & Scuola Superiore Sant’Anna, Milan, Italy
- The Biorobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Gabriele Marino
- Bertarelli Foundation Chair in Translational Neural Engineering, Center for Neuroprosthetics and Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
- The Biorobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Sara Moccia
- The Biorobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, Pisa, Italy
- Department of Innovative Technologies in Medicine and Dentistry, Università degli Studi “G. d’Annunzio”, Chieti-Pescara, Italy
| | - Silvestro Micera
- Modular Implantable Neurotechnologies Laboratory, Università Vita-Salute San Raffaele & Scuola Superiore Sant’Anna, Milan, Italy
- Bertarelli Foundation Chair in Translational Neural Engineering, Center for Neuroprosthetics and Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
- The Biorobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, Pisa, Italy
| |
Collapse
|
2
|
de Ruyter van Steveninck J, Nipshagen M, van Gerven M, Güçlü U, Güçlüturk Y, van Wezel R. Gaze-contingent processing improves mobility, scene recognition and visual search in simulated head-steered prosthetic vision. J Neural Eng 2024; 21:026037. [PMID: 38502957 DOI: 10.1088/1741-2552/ad357d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/19/2024] [Indexed: 03/21/2024]
Abstract
Objective.The enabling technology of visual prosthetics for the blind is making rapid progress. However, there are still uncertainties regarding the functional outcomes, which can depend on many design choices in the development. In visual prostheses with a head-mounted camera, a particularly challenging question is how to deal with the gaze-locked visual percept associated with spatial updating conflicts in the brain. The current study investigates a recently proposed compensation strategy based on gaze-contingent image processing with eye-tracking. Gaze-contingent processing is expected to reinforce natural-like visual scanning and reestablished spatial updating based on eye movements. The beneficial effects remain to be investigated for daily life activities in complex visual environments.Approach.The current study evaluates the benefits of gaze-contingent processing versus gaze-locked and gaze-ignored simulations in the context of mobility, scene recognition and visual search, using a virtual reality simulated prosthetic vision paradigm with sighted subjects.Main results.Compared to gaze-locked vision, gaze-contingent processing was consistently found to improve the speed in all experimental tasks, as well as the subjective quality of vision. Similar or further improvements were found in a control condition that ignores gaze-dependent effects, a simulation that is unattainable in the clinical reality.Significance.Our results suggest that gaze-locked vision and spatial updating conflicts can be debilitating for complex visually-guided activities of daily living such as mobility and orientation. Therefore, for prospective users of head-steered prostheses with an unimpaired oculomotor system, the inclusion of a compensatory eye-tracking system is strongly endorsed.
Collapse
Affiliation(s)
| | - Mo Nipshagen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Marcel van Gerven
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Umut Güçlü
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Yağmur Güçlüturk
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Richard van Wezel
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Biomedical Signals and Systems Group, University of Twente, Enschede, The Netherlands
| |
Collapse
|
3
|
Halfmann C, Rüland T, Müller F, Jehasse K, Kampa BM. Electrophysiological properties of layer 2/3 pyramidal neurons in the primary visual cortex of a retinitis pigmentosa mouse model ( rd10). Front Cell Neurosci 2023; 17:1258773. [PMID: 37780205 PMCID: PMC10540630 DOI: 10.3389/fncel.2023.1258773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/25/2023] [Indexed: 10/03/2023] Open
Abstract
Retinal degeneration is one of the main causes of visual impairment and blindness. One group of retinal degenerative diseases, leading to the loss of photoreceptors, is collectively termed retinitis pigmentosa. In this group of diseases, the remaining retina is largely spared from initial cell death making retinal ganglion cells an interesting target for vision restoration methods. However, it is unknown how downstream brain areas, in particular the visual cortex, are affected by the progression of blindness. Visual deprivation studies have shown dramatic changes in the electrophysiological properties of visual cortex neurons, but changes on a cellular level in retinitis pigmentosa have not been investigated yet. Therefore, we used the rd10 mouse model to perform patch-clamp recordings of pyramidal neurons in layer 2/3 of the primary visual cortex to screen for potential changes in electrophysiological properties resulting from retinal degeneration. Compared to wild-type C57BL/6 mice, we only found an increase in intrinsic excitability around the time point of maximal retinal degeneration. In addition, we saw an increase in the current amplitude of spontaneous putative inhibitory events after a longer progression of retinal degeneration. However, we did not observe a long-lasting shift in excitability after prolonged retinal degeneration. Together, our results provide evidence of an intact visual cortex with promising potential for future therapeutic strategies to restore vision.
Collapse
Affiliation(s)
- Claas Halfmann
- Systems Neurophysiology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Thomas Rüland
- Systems Neurophysiology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
- Molecular and Cellular Physiology, Institute of Biological Information Processing (IBI-1), Forschungszentrum Jülich GmbH, Jülich, Germany
- Research Training Group 2416 MultiSenses-MultiScales, RWTH Aachen University, Aachen, Germany
| | - Frank Müller
- Molecular and Cellular Physiology, Institute of Biological Information Processing (IBI-1), Forschungszentrum Jülich GmbH, Jülich, Germany
- Research Training Group 2416 MultiSenses-MultiScales, RWTH Aachen University, Aachen, Germany
- Research Training Group 2610 Innoretvision, RWTH Aachen University, Aachen, Germany
| | - Kevin Jehasse
- Systems Neurophysiology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Björn M. Kampa
- Systems Neurophysiology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
- Research Training Group 2416 MultiSenses-MultiScales, RWTH Aachen University, Aachen, Germany
- Research Training Group 2610 Innoretvision, RWTH Aachen University, Aachen, Germany
- JARA BRAIN, Institute of Neuroscience and Medicine (INM-10), Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|