1
|
Tonelli D, Tonelli M, Gianvittorio S, Lesch A. LDH-Based Voltammetric Sensors. MICROMACHINES 2024; 15:640. [PMID: 38793212 PMCID: PMC11123164 DOI: 10.3390/mi15050640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024]
Abstract
Layered double hydroxides (LDHs), also named hydrotalcite-like compounds, are anionic clays with a lamellar structure which have been extensively used in the last two decades as electrode modifiers for the design of electrochemical sensors. These materials can be classified into LDHs containing or not containing redox-active centers. In the former case, a transition metal cation undergoing a reversible redox reaction within a proper potential window is present in the layers, and, therefore, it can act as electron transfer mediator, and electrocatalyze the oxidation of an analyte for which the required overpotential is too high. In the latter case, a negatively charged species acting as a redox mediator can be introduced into the interlayer spaces after exchanging the anion coming from the synthesis, and, again, the material can display electrocatalytic properties. Alternatively, due to the large specific surface area of LDHs, molecules with electroactivity can be adsorbed on their surface. In this review, the most significant electroanalytical applications of LDHs as electrode modifiers for the development of voltammetric sensors are presented, grouping them based on the two types of materials.
Collapse
Affiliation(s)
- Domenica Tonelli
- Dipartimento di Chimica Industriale “Toso Montanari”, Università di Bologna, Via Piero Gobetti 85, 40129 Bologna, Italy; (S.G.); (A.L.)
| | - Matteo Tonelli
- ANRT—Association Nationale de le Reserche et de la Technologie, 33, Rue Rennequin, 75017 Paris, France;
| | - Stefano Gianvittorio
- Dipartimento di Chimica Industriale “Toso Montanari”, Università di Bologna, Via Piero Gobetti 85, 40129 Bologna, Italy; (S.G.); (A.L.)
| | - Andreas Lesch
- Dipartimento di Chimica Industriale “Toso Montanari”, Università di Bologna, Via Piero Gobetti 85, 40129 Bologna, Italy; (S.G.); (A.L.)
| |
Collapse
|
2
|
Tomassetti M, Pezzilli R, Leonardi C, Prestopino G, Di Natale C, Campanella L, Medaglia PG. A Direct Catalytic Ethanol Fuel Cell (DCEFC) Modified by LDHs, or by Catalase-LDHs, and Improvement in Its Kinetic Performance: Applications for Human Saliva and Disinfectant Products for COVID-19. BIOSENSORS 2023; 13:bios13040441. [PMID: 37185517 PMCID: PMC10136279 DOI: 10.3390/bios13040441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 05/17/2023]
Abstract
In this work, it has been experimentally proven that the kinetic performance of a common Direct Catalytic Ethanol Fuel Cell (DCEFC) can be increased by introducing nanostructured (ZnII,AlIII(OH)2)+NO3-·H2O Layered Double Hydroxides (LDHs) into the anode compartment. Carrying out the measurements with the open-circuit voltage method and using a kinetic format, it has been shown that the introduction of LDHs in the anodic compartment implies a 1.3-fold increase in the calibration sensitivity of the method. This improvement becomes even greater in the presence of hydrogen peroxide in a solution. Furthermore, we show that the calibration sensitivity increased by 8-times, when the fuel cell is modified by the enzyme catalase, crosslinked on LDHs and in the presence of hydrogen peroxide. The fuel cell, thus modified (with or without enzyme), has been used for analytical applications on real samples, such as biological (human saliva) and hand disinfectant samples, commonly used for the prevention of COVID-19, obtaining very positive results from both analytical and kinetic points of view on ethanol detection. Moreover, if the increase in the calibration sensitivity is of great importance from the point of view of analytical applications, it must be remarked that the increase in the speed of the ethanol oxidation process in the fuel cell can also be extremely useful for the purposes of improving the energy performance of a DCEFC.
Collapse
Affiliation(s)
- Mauro Tomassetti
- Department of Electronic Engineering, University of Rome "Tor Vergata", Viale del Politecnico 1, 00133 Rome, Italy
- Department of Chemistry, University of Rome "La Sapienza", P.le A. Moro 5, 00185 Rome, Italy
| | - Riccardo Pezzilli
- Department of Industrial Engineering, University of Rome "Tor Vergata", Viale del Politecnico 1, 00133 Rome, Italy
| | - Claudio Leonardi
- Department of Industrial Engineering, University of Rome "Tor Vergata", Viale del Politecnico 1, 00133 Rome, Italy
| | - Giuseppe Prestopino
- Department of Industrial Engineering, University of Rome "Tor Vergata", Viale del Politecnico 1, 00133 Rome, Italy
| | - Corrado Di Natale
- Department of Electronic Engineering, University of Rome "Tor Vergata", Viale del Politecnico 1, 00133 Rome, Italy
| | - Luigi Campanella
- Department of Chemistry, University of Rome "La Sapienza", P.le A. Moro 5, 00185 Rome, Italy
| | - Pier Gianni Medaglia
- Department of Industrial Engineering, University of Rome "Tor Vergata", Viale del Politecnico 1, 00133 Rome, Italy
| |
Collapse
|
3
|
Ziyatdinova G, Antonova T, Davletshin R. Voltammetric Sensor Based on the Poly( p-aminobenzoic Acid) for the Simultaneous Quantification of Aromatic Aldehydes as Markers of Cognac and Brandy Quality. SENSORS (BASEL, SWITZERLAND) 2023; 23:2348. [PMID: 36850946 PMCID: PMC9960838 DOI: 10.3390/s23042348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Cognac and brandy quality control is an actual topic in food analysis. Aromatic aldehydes, particularly syringaldehyde and vanillin, are one of the markers used for these purposes. Therefore, simple and express methods for their simultaneous determination are required. The voltammetric sensor based on the layer-by-layer combination of multi-walled carbon nanotubes (MWCNTs) and electropolymerized p-aminobenzoic acid (p-ABA) provides full resolution of the syringaldehyde and vanillin oxidation peaks. Optimized conditions of p-ABA electropolymerization (100 µM monomer in Britton-Robinson buffer pH 2.0, twenty cycles in the polarization window of -0.5 to 2.0 V with a potential scan rate of 100 mV·s-1) were found. The poly(p-ABA)-based electrode was characterized by scanning electron microscopy (SEM), cyclic voltammetry, and electrochemical impedance spectroscopy (EIS). Electrooxidation of syringaldehyde and vanillin is an irreversible two-electron diffusion-controlled process. In the differential pulse mode, the sensor allows quantification of aromatic aldehydes in the ranges of 0.075-7.5 and 7.5-100 µM for syringaldehyde and 0.50-7.5 and 7.5-100 µM for vanillin with the detection limits of 0.018 and 0.19 µM, respectively. The sensor was applied to cognac and brandy samples and compared to chromatography.
Collapse
Affiliation(s)
- Guzel Ziyatdinova
- Analytical Chemistry Department, Kazan Federal University, Kremleyevskaya 18, Kazan 420008, Russia
| | - Tatyana Antonova
- Analytical Chemistry Department, Kazan Federal University, Kremleyevskaya 18, Kazan 420008, Russia
| | - Rustam Davletshin
- Department of High Molecular and Organoelement Compounds, Kazan Federal University, Kremleyevskaya 18, Kazan 420008, Russia
| |
Collapse
|
4
|
Ghaani M, Büyüktaş D, Carullo D, Farris S. Development of a New Electrochemical Sensor Based on Molecularly Imprinted Biopolymer for Determination of 4,4'-Methylene Diphenyl Diamine. SENSORS (BASEL, SWITZERLAND) 2022; 23:s23010046. [PMID: 36616643 PMCID: PMC9824447 DOI: 10.3390/s23010046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 06/12/2023]
Abstract
A new molecularly imprinted electrochemical sensor was proposed to determine 4,4'-methylene diphenyl diamine (MDA) using molecularly imprinted polymer-multiwalled carbon nanotubes modified glassy carbon electrode (MIP/MWCNTs/GCE). GCE was coated by MWCNTs (MWCNTs/GCE) because of their antifouling qualities and in order to improve the sensor sensitivity. To make the whole sensor, a polymeric film made up of chitosan nanoparticles was electrodeposited by the cyclic voltammetry method on the surface of MWCNTs/GCE in the presence of MDA as a template. Different parameters such as scan cycles, elution time, incubation time, molar ratio of template molecules to functional monomers, and pH were optimized to increase the performance of the MIP sensor. With a detection limit of 15 nM, a linear response to MDA was seen in the concentration range of 0.5-100 µM. The imprinting factor (IF) of the proposed sensor was also calculated at around 3.66, demonstrating the extremely high recognition performance of a MIP/MWCNT-modified electrode. Moreover, the sensor exhibited good reproducibility and selectivity. Finally, the proposed sensor was efficiently used to determine MDA in real samples with satisfactory recoveries ranging from 94.10% to 106.76%.
Collapse
Affiliation(s)
- Masoud Ghaani
- DeFENS, Department of Food, Environmental, and Nutritional Sciences, Food Packaging Lab., University of Milan, via Celoria 2—I, 20133 Milan, Italy
| | - Duygu Büyüktaş
- Department of Food Engineering, Faculty of Engineering, Izmir Institute of Technology, Gülbahçe Köyü, Urla, Izmir 35430, Turkey
| | - Daniele Carullo
- DeFENS, Department of Food, Environmental, and Nutritional Sciences, Food Packaging Lab., University of Milan, via Celoria 2—I, 20133 Milan, Italy
| | - Stefano Farris
- DeFENS, Department of Food, Environmental, and Nutritional Sciences, Food Packaging Lab., University of Milan, via Celoria 2—I, 20133 Milan, Italy
- INSTM, National Consortium of Materials Science and Technology, Local Unit University of Milan, Via Celoria 2—I, 20133 Milan, Italy
| |
Collapse
|