1
|
Otapo AT, Othmani A, Khodabandelou G, Ming Z. Prediction and detection of terminal diseases using Internet of Medical Things: A review. Comput Biol Med 2025; 188:109835. [PMID: 39999492 DOI: 10.1016/j.compbiomed.2025.109835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/31/2024] [Accepted: 02/08/2025] [Indexed: 02/27/2025]
Abstract
The integration of Artificial Intelligence (AI) with the Internet of Medical Things (IoMT) has revolutionized disease prediction and detection, but challenges such as data heterogeneity, privacy concerns, and model generalizability hinder its full potential in healthcare. This review examines these challenges and evaluates the effectiveness of AI-IoMT techniques in predicting chronic and terminal diseases, including cardiovascular conditions, Alzheimer's disease, and cancers. We analyze a range of Machine Learning (ML) and Deep Learning (DL) approaches (e.g., XGBoost, Random Forest, CNN, LSTM), alongside advanced strategies like federated learning, transfer learning, and blockchain, to improve model robustness, data security, and interoperability. Findings highlight that transfer learning and ensemble methods enhance model adaptability across clinical settings, while blockchain and federated learning effectively address privacy and data standardization. Ultimately, the review emphasizes the importance of data harmonization, secure frameworks, and multi-disease models as critical research directions for scalable, comprehensive AI-IoMT solutions in healthcare.
Collapse
Affiliation(s)
- Akeem Temitope Otapo
- Laboratoire Images, Signaux et Systémes Intelligents (LiSSi)-EA 3956, Université Paris-Est Créteil (UPEC), 122 Rue Paul Armangot, Vitry Sur Seine, Créteil, 94010, France.
| | - Alice Othmani
- Laboratoire Images, Signaux et Systémes Intelligents (LiSSi)-EA 3956, Université Paris-Est Créteil (UPEC), 122 Rue Paul Armangot, Vitry Sur Seine, Créteil, 94010, France.
| | - Ghazaleh Khodabandelou
- Laboratoire Images, Signaux et Systémes Intelligents (LiSSi)-EA 3956, Université Paris-Est Créteil (UPEC), 122 Rue Paul Armangot, Vitry Sur Seine, Créteil, 94010, France.
| | - Zuheng Ming
- Laboratoire L2TI, Institut Galilée, Université Sorbonne Paris Nord (USPN), 99 Avenue Jean-Baptiste Clément, Villetaneuse, 93430, France.
| |
Collapse
|
2
|
Tan WY, Hargreaves CA, Dawe GS, Hsu W, Lee ML, Vipin A, Kandiah N, Hilal S. Incremental Value of Multidomain Risk Factors for Dementia Prediction: A Machine Learning Approach. Am J Geriatr Psychiatry 2025; 33:229-244. [PMID: 39209617 DOI: 10.1016/j.jagp.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/12/2024] [Accepted: 07/27/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE The current evidence regarding how different predictor domains contributes to predicting incident dementia remains unclear. This study aims to assess the incremental value of five predictor domains when added to a simple dementia risk prediction model (DRPM) for predicting incident dementia in older adults. DESIGN Population-based, prospective cohort study. SETTING UK Biobank study. PARTICIPANTS Individuals aged 60 or older without dementia. MEASUREMENTS Fifty-five dementia-related predictors were gathered and categorized into clinical and medical history, questionnaire, cognition, polygenetic risk, and neuroimaging domains. Incident dementia (all-cause) and the subtypes, Alzheimer's disease (AD) and vascular dementia (VaD), were determined through hospital and death registries. Ensemble machine learning (ML) DRPMs were employed for prediction. The incremental values of risk predictors were assessed using the percent change in Area Under the Curve (∆AUC%) and the net reclassification index (NRI). RESULTS The simple DRPM which included age, body mass index, sex, education, diabetes, hyperlipidaemia, hypertension, depression, smoking, and alcohol consumption yielded an AUC of 0.711 (± 0.008 SD). The five predictor domains exhibited varying levels of incremental value over the basic model when predicting all-cause dementia and the two subtypes. Neuroimaging markers provided the highest incremental value in predicting all-cause dementia (∆AUC% +9.6%) and AD (∆AUC% +16.5%) while clinical and medical history data performed the best at predicting VaD (∆AUC% +12.2%). Combining clinical and medical history, and questionnaire data synergistically enhanced ML DRPM performance. CONCLUSION Combining predictors from different domains generally results in better predictive performance. Selecting predictors involves trade-offs, and while neuroimaging markers can significantly enhance predictive accuracy, they may pose challenges in terms of cost or accessibility.
Collapse
Affiliation(s)
- Wei Ying Tan
- Saw Swee Hock School of Public Health (WYT, SH), National University of Singapore and National University Health System, Singapore
| | | | - Gavin S Dawe
- Healthy Longevity Translational Research Programme (GSD), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Precision Medicine Translational Research Programme (GSD), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Neurobiology Programme (GSD), Life Sciences Institute, National University of Singapore, Singapore; Department of Pharmacology (SH), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wynne Hsu
- School of Computing (WH, MLL), National University of Singapore, Singapore; Institute of Data Sciences (WH, MLL), National University of Singapore, Singapore
| | - Mong Li Lee
- School of Computing (WH, MLL), National University of Singapore, Singapore; Institute of Data Sciences (WH, MLL), National University of Singapore, Singapore
| | - Ashwati Vipin
- Dementia Research Centre (AV, NK), Lee Kong Chian School of Medicine, Singapore
| | - Nagaendran Kandiah
- Dementia Research Centre (AV, NK), Lee Kong Chian School of Medicine, Singapore
| | - Saima Hilal
- Saw Swee Hock School of Public Health (WYT, SH), National University of Singapore and National University Health System, Singapore; Department of Pharmacology (SH), Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
3
|
Malik I, Iqbal A, Gu YH, Al-antari MA. Deep Learning for Alzheimer's Disease Prediction: A Comprehensive Review. Diagnostics (Basel) 2024; 14:1281. [PMID: 38928696 PMCID: PMC11202897 DOI: 10.3390/diagnostics14121281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Alzheimer's disease (AD) is a neurological disorder that significantly impairs cognitive function, leading to memory loss and eventually death. AD progresses through three stages: early stage, mild cognitive impairment (MCI) (middle stage), and dementia. Early diagnosis of Alzheimer's disease is crucial and can improve survival rates among patients. Traditional methods for diagnosing AD through regular checkups and manual examinations are challenging. Advances in computer-aided diagnosis systems (CADs) have led to the development of various artificial intelligence and deep learning-based methods for rapid AD detection. This survey aims to explore the different modalities, feature extraction methods, datasets, machine learning techniques, and validation methods used in AD detection. We reviewed 116 relevant papers from repositories including Elsevier (45), IEEE (25), Springer (19), Wiley (6), PLOS One (5), MDPI (3), World Scientific (3), Frontiers (3), PeerJ (2), Hindawi (2), IO Press (1), and other multiple sources (2). The review is presented in tables for ease of reference, allowing readers to quickly grasp the key findings of each study. Additionally, this review addresses the challenges in the current literature and emphasizes the importance of interpretability and explainability in understanding deep learning model predictions. The primary goal is to assess existing techniques for AD identification and highlight obstacles to guide future research.
Collapse
Affiliation(s)
- Isra Malik
- Department of Computer Science, COMSATS University Islamabad, Wah Campus, Wah Cantt 44000, Pakistan
| | - Ahmed Iqbal
- Department of Computer Science, Sir Syed Case Institute of Technology, Islamabad 45230, Pakistan
| | - Yeong Hyeon Gu
- Department of Artificial Intelligence and Data Science, College of AI Convergence, Daeyang AI Center, Sejong University, Seoul 05006, Republic of Korea
| | - Mugahed A. Al-antari
- Department of Artificial Intelligence and Data Science, College of AI Convergence, Daeyang AI Center, Sejong University, Seoul 05006, Republic of Korea
| |
Collapse
|
4
|
Batool A, Byun YC. Toward Improving Breast Cancer Classification Using an Adaptive Voting Ensemble Learning Algorithm. IEEE ACCESS 2024; 12:12869-12882. [DOI: 10.1109/access.2024.3356602] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Amreen Batool
- Department of Electronic Engineering, Institute of Information Science and Technology, Jeju National University, Jeju-si, South Korea
| | - Yung-Cheol Byun
- Department of Computer Engineering, Major of Electronic Engineering, Institute of Information Science and Technology, Jeju National University, Jeju-si, South Korea
| |
Collapse
|
5
|
Lim J, Li J, Feng X, Feng L, Xia Y, Xiao X, Wang Y, Xu Z. Machine learning classification of polycystic ovary syndrome based on radial pulse wave analysis. BMC Complement Med Ther 2023; 23:409. [PMID: 37957660 PMCID: PMC10644435 DOI: 10.1186/s12906-023-04249-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 11/07/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Patients with Polycystic ovary syndrome (PCOS) experienced endocrine disorders that may present vascular function changes. This study aimed to classify and predict PCOS by radial pulse wave parameters using machine learning (ML) methods and to provide evidence for objectifying pulse diagnosis in traditional Chinese medicine (TCM). METHODS A case-control study with 459 subjects divided into a PCOS group and a healthy (non-PCOS) group. The pulse wave parameters were measured and analyzed between the two groups. Seven supervised ML classification models were applied, including K-Nearest Neighbors (KNN), Support Vector Machine (SVM), Decision Trees, Random Forest, Logistic Regression, Voting, and Long Short Term Memory networks (LSTM). Parameters that were significantly different were selected as input features and stratified k-fold cross-validations training was applied to the models. RESULTS There were 316 subjects in the PCOS group and 143 subjects in the healthy group. Compared to the healthy group, the pulse wave parameters h3/h1 and w/t from both left and right sides were increased while h4, t4, t, As, h4/h1 from both sides and right t1 were decreased in the PCOS group (P < 0.01). Among the ML models evaluated, both the Voting and LSTM with ensemble learning capabilities, demonstrated competitive performance. These models achieved the highest results across all evaluation metrics. Specifically, they both attained a testing accuracy of 72.174% and an F1 score of 0.818, their respective AUC values were 0.715 for the Voting and 0.722 for the LSTM. CONCLUSION Radial pulse wave signal could identify most PCOS patients accurately (with a good F1 score) and is valuable for early detection and monitoring of PCOS with acceptable overall accuracy. This technique can stimulate the development of individualized PCOS risk assessment using mobile detection technology, furthermore, gives physicians an intuitive understanding of the objective pulse diagnosis of TCM. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Jiekee Lim
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P. R. China
| | - Jieyun Li
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P. R. China
| | - Xiao Feng
- The First Affiliated Hospital, Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510405, P. R. China
| | - Lu Feng
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P. R. China
| | - Yumo Xia
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P. R. China
| | - Xinang Xiao
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P. R. China
| | - Yiqin Wang
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P. R. China
- Shanghai Key Laboratory of Health Identification and Assessment, Shanghai, 201203, P. R. China
| | - Zhaoxia Xu
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P. R. China.
- Shanghai Key Laboratory of Health Identification and Assessment, Shanghai, 201203, P. R. China.
| |
Collapse
|
6
|
Terzi R. An Ensemble of Deep Learning Object Detection Models for Anatomical and Pathological Regions in Brain MRI. Diagnostics (Basel) 2023; 13:diagnostics13081494. [PMID: 37189595 DOI: 10.3390/diagnostics13081494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
This paper proposes ensemble strategies for the deep learning object detection models carried out by combining the variants of a model and different models to enhance the anatomical and pathological object detection performance in brain MRI. In this study, with the help of the novel Gazi Brains 2020 dataset, five different anatomical parts and one pathological part that can be observed in brain MRI were identified, such as the region of interest, eye, optic nerves, lateral ventricles, third ventricle, and a whole tumor. Firstly, comprehensive benchmarking of the nine state-of-the-art object detection models was carried out to determine the capabilities of the models in detecting the anatomical and pathological parts. Then, four different ensemble strategies for nine object detectors were applied to boost the detection performance using the bounding box fusion technique. The ensemble of individual model variants increased the anatomical and pathological object detection performance by up to 10% in terms of the mean average precision (mAP). In addition, considering the class-based average precision (AP) value of the anatomical parts, an up to 18% AP improvement was achieved. Similarly, the ensemble strategy of the best different models outperformed the best individual model by 3.3% mAP. Additionally, while an up to 7% better FAUC, which is the area under the TPR vs. FPPI curve, was achieved on the Gazi Brains 2020 dataset, a 2% better FAUC score was obtained on the BraTS 2020 dataset. The proposed ensemble strategies were found to be much more efficient in finding the anatomical and pathological parts with a small number of anatomic objects, such as the optic nerve and third ventricle, and producing higher TPR values, especially at low FPPI values, compared to the best individual methods.
Collapse
Affiliation(s)
- Ramazan Terzi
- Department of Big Data and Artificial Intelligence, Digital Transformation Office of the Presidency of Republic of Türkiye, Ankara 06100, Turkey
- Department of Computer Engineering, Amasya University, Amasya 05100, Turkey
| |
Collapse
|