1
|
Singh Parmar UP, Surico PL, Singh RB, Romano F, Salati C, Spadea L, Musa M, Gagliano C, Mori T, Zeppieri M. Künstliche Intelligenz (KI) zur Früherkennung von Netzhauterkrankungen. KOMPASS OPHTHALMOLOGIE 2025:1-8. [DOI: 10.1159/000546000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Künstliche Intelligenz (KI) hat sich zu einem transformativen Werkzeug auf dem Gebiet der Augenheilkunde entwickelt und revolutioniert die Diagnose und Behandlung von Krankheiten. Diese Arbeit gibt einen umfassenden Überblick über KI-Anwendungen bei verschiedenen Netzhauterkrankungen und zeigt ihr Potenzial, die Effizienz von Vorsorgeuntersuchungen zu erhöhen, Frühdiagnosen zu erleichtern und die Patientenergebnisse zu verbessern. Wir erklären die grundlegenden Konzepte der KI, einschließlich des maschinellen Lernens (ML) und des Deep Learning (DL), und deren Anwendung in der Augenheilkunde und heben die Bedeutung von KI-basierten Lösungen bei der Bewältigung der Komplexität und Variabilität von Netzhauterkrankungen hervor. Wir gehen auch auf spezifische Anwendungen der KI im Zusammenhang mit Netzhauterkrankungen wie diabetischer Retinopathie (DR), altersbedingter Makuladegeneration (AMD), makulärer Neovaskularisation, Frühgeborenen-Retinopathie (ROP), retinalem Venenverschluss (RVO), hypertensiver Retinopathie (HR), Retinopathia pigmentosa, Morbus Stargardt, Morbus Best (Best’sche vitelliforme Makuladystrophie) und Sichelzellenretinopathie ein. Wir konzentrieren uns auf die aktuelle Landschaft der KI-Technologien, einschließlich verschiedener KI-Modelle, ihrer Leistungsmetriken und klinischen Implikationen. Darüber hinaus befassen wir uns mit den Herausforderungen und Schwierigkeiten bei der Integration von KI in die klinische Praxis, einschließlich des «Black-Box-Phänomens», der Verzerrungen bei der Darstellung von Daten und der Einschränkungen im Zusammenhang mit der ganzheitlichen Bewertung von Patienten. Abschließend wird die kollaborative Rolle der KI an der Seite des medizinischen Fachpersonals hervorgehoben, wobei ein synergetischer Ansatz für die Erbringung von Gesundheitsdienstleistungen befürwortet wird. Es wird betont, wie wichtig es ist, KI als Ergänzung und nicht als Ersatz für menschliche Expertise einzusetzen, um ihr Potenzial zu maximieren, die Gesundheitsversorgung zu revolutionieren, Ungleichheiten in der Gesundheitsversorgung zu verringern und die Patientenergebnisse in der sich entwickelnden medizinischen Landschaft zu verbessern.
Collapse
|
2
|
Pushparani DS, Varalakshmi J, Roobini K, Hamshapriya P, Livitha A. Diabetic Retinopathy-A Review. Curr Diabetes Rev 2025; 21:43-55. [PMID: 38831577 DOI: 10.2174/0115733998296228240521151050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/21/2024] [Accepted: 04/30/2024] [Indexed: 06/05/2024]
Abstract
Diabetic Retinopathy is a vascular microvascular disease also called diabetic eye disease caused by microangiopathy leading to progressive damage of the retina and blindness. The uncontrolled blood glycemic level or sugar level results in diabetic retinopathy. There are two stages of diabetic retinopathy: proliferative diabetic retinopathy and nonproliferative diabetic retinopathy. Symptoms of diabetic retinopathy often have no early warning signs, even muscular edema, which can cause rapid vision loss. Macular edema in which the blood vessels leak can also occur at any stage of diabetic retinopathy. Symptoms are darkened or distorted images and blurred vision that are not the same in both eyes. This review study primarily discusses the pathophysiology, genetics, and ALR, AGEs, VEGF, EPO, and eNOS involved in diabetic retinopathy. The longer a person has diabetes, the higher their risk of developing some ocular problems. During pregnancy, diabetic retinopathy may also be a problem for women with diabetes. NIH are recommends that all pregnant women with diabetes have an overall eye examination. Diagnosis of diabetic retinopathy is made during an eye examination that comprises ophthalmoscopy or fundus photography, and glow-in angiography for Fundus. Here, we present a review of the current insights into pathophysiology in diabetic retinopathy, as well as clinical treatments for diabetic retinopathy patients. Novel laboratory findings and related clinical trials are also analysed.
Collapse
Affiliation(s)
- D S Pushparani
- PG and Research Department of Biochemistry, Dwaraka Doss Goverdhan Doss Vaishnav College, Arumbakkam, Chennai, 600106, India
| | - J Varalakshmi
- PG and Research Department of Biochemistry, Dwaraka Doss Goverdhan Doss Vaishnav College, Arumbakkam, Chennai, 600106, India
| | - K Roobini
- PG and Research Department of Biochemistry, Dwaraka Doss Goverdhan Doss Vaishnav College, Arumbakkam, Chennai, 600106, India
| | - P Hamshapriya
- PG and Research Department of Biochemistry, Dwaraka Doss Goverdhan Doss Vaishnav College, Arumbakkam, Chennai, 600106, India
| | - A Livitha
- PG and Research Department of Biochemistry, Dwaraka Doss Goverdhan Doss Vaishnav College, Arumbakkam, Chennai, 600106, India
| |
Collapse
|
3
|
Bidwai P, Gite S, Pradhan B, Gupta H, Alamri A. Harnessing deep learning for detection of diabetic retinopathy in geriatric group using optical coherence tomography angiography-OCTA: A promising approach. MethodsX 2024; 13:102910. [PMID: 39280760 PMCID: PMC11393589 DOI: 10.1016/j.mex.2024.102910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/12/2024] [Indexed: 09/18/2024] Open
Abstract
The prevalence of diabetic retinopathy (DR) among the geriatric population poses significant challenges for early detection and management. Optical Coherence Tomography Angiography (OCTA) combined with Deep Learning presents a promising avenue for improving diagnostic accuracy in this vulnerable demographic. In this method, we propose an innovative approach utilizing OCTA images and Deep Learning algorithms to detect diabetic retinopathy in geriatric patients. We have collected 262 OCTA scans of 179 elderly individuals, both with and without diabetes, and trained a deep-learning model to classify retinopathy severity levels. Convolutional Neural Network (CNN) models: Inception V3, ResNet-50, ResNet50V2, VggNet-16, VggNet-19, DenseNet121, DenseNet201, EfficientNetV2B0, are trained to extract features and further classify them. Here we demonstrate:•The potential of OCTA and Deep Learning in enhancing geriatric eye care at the very initial stage.•The importance of technological advancements in addressing age-related ocular diseases and providing reliable assistance to clinicians for DR classification.•The efficacy of this approach in accurately identifying diabetic retinopathy stages, thereby facilitating timely interventions, and preventing vision loss in the elderly population.
Collapse
Affiliation(s)
- Pooja Bidwai
- Symbiosis Centre for Applied Artificial Intelligence (SCAAI) Symbiosis Institute of Technology, Symbiosis International (Deemed University) (SIU), Lavale, Pune 412115 India
| | - Shilpa Gite
- Symbiosis Centre for Applied Artificial Intelligence (SCAAI) Symbiosis Institute of Technology, Symbiosis International (Deemed University) (SIU), Lavale, Pune 412115 India
- Symbiosis Institute of Technology, Symbiosis International (Deemed University) (SIU), Lavale, Pune 412115 India
| | - Biswajeet Pradhan
- Centre for Advanced Modelling and Geospatial Information Systems (CAMGIS), School of Civil and Environmental Engineering, Faculty of Engineering & IT, University of Technology Sydney, NSW 2007, Australia
| | - Harshita Gupta
- Symbiosis Centre for Applied Artificial Intelligence (SCAAI) Symbiosis Institute of Technology, Symbiosis International (Deemed University) (SIU), Lavale, Pune 412115 India
| | - Abdullah Alamri
- Department of Geology and Geophysics, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Selvaganapathy N, Siddhan S, Sundararajan P, Balasundaram S. Automatic screening of retinal lesions for detecting diabetic retinopathy using adaptive multiscale MobileNet with abnormality segmentation from public dataset. NETWORK (BRISTOL, ENGLAND) 2024:1-33. [PMID: 39520670 DOI: 10.1080/0954898x.2024.2424242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 10/01/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Owing to the epidemic growth of diabetes, ophthalmologists need to examine the huge fundus images for diagnosing the disease of Diabetic Retinopathy (DR). Without proper knowledge, people are too lethargic to detect the DR. Therefore, the early diagnosis system is requisite for treating ailments in the medical industry. Therefore, a novel deep model-based DR detection structure is recommended to fix the aforementioned difficulties. The developed deep model-based diabetic retinopathy detection process is performed adaptively. The DR detection process is imitated by garnering the images from benchmark sources. The gathered images are further preceded by the abnormality segmentation phase. Here, the Residual TransUNet with Enhanced loss function is used to employ the abnormality segmentation, and the loss function in this structure may be helpful to lessen the error in the segmentation procedure. Further, the segmented images are passed to the final phase of retinopathy detection. At this phase, the detection is carried out through the Adaptive Multiscale MobileNet. The variables in the AMMNet are optimized by the Adaptive Puzzle Optimization to obtain better detection performance. Finally, the effectiveness of the offered approach is confirmed by the experimentation procedure over various performance indices.
Collapse
Affiliation(s)
- Nandhini Selvaganapathy
- Department of Data Science and Business Systems, SRM Institute of Science and Technology, Chennai, India
| | - Saravanan Siddhan
- Department of Computer Science and Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, India
| | | | - Sathiyaprasad Balasundaram
- Department of Computer Science and Engineering, Sathyabama Institute of Science and Technology, Chennai, India
| |
Collapse
|
5
|
Xu X, Zhang M, Huang S, Li X, Kui X, Liu J. The application of artificial intelligence in diabetic retinopathy: progress and prospects. Front Cell Dev Biol 2024; 12:1473176. [PMID: 39524224 PMCID: PMC11543434 DOI: 10.3389/fcell.2024.1473176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
In recent years, artificial intelligence (AI), especially deep learning models, has increasingly been integrated into diagnosing and treating diabetic retinopathy (DR). From delving into the singular realm of ocular fundus photography to the gradual development of proteomics and other molecular approaches, from machine learning (ML) to deep learning (DL), the journey has seen a transition from a binary diagnosis of "presence or absence" to the capability of discerning the progression and severity of DR based on images from various stages of the disease course. Since the FDA approval of IDx-DR in 2018, a plethora of AI models has mushroomed, gradually gaining recognition through a myriad of clinical trials and validations. AI has greatly improved early DR detection, and we're nearing the use of AI in telemedicine to tackle medical resource shortages and health inequities in various areas. This comprehensive review meticulously analyzes the literature and clinical trials of recent years, highlighting key AI models for DR diagnosis and treatment, including their theoretical bases, features, applicability, and addressing current challenges like bias, transparency, and ethics. It also presents a prospective outlook on the future development in this domain.
Collapse
Affiliation(s)
- Xinjia Xu
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Mingchen Zhang
- Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Sihong Huang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaoying Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaoyan Kui
- School of Computer Science and Engineering, Central South University, Changsha, Hunan, China
| | - Jun Liu
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
- Clinical Research Center for Medical Imaging in Hunan Province, Changsha, China
- Department of Radiology Quality Control Center in Hunan Province, Changsha, China
| |
Collapse
|
6
|
Mani P, Ramachandran N, Paul SJ, Ramesh PV. Laceration assessment: advanced segmentation and classification framework for retinal disease categorization in optical coherence tomography images. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2024; 41:1786-1793. [PMID: 39889044 DOI: 10.1364/josaa.526142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/31/2024] [Indexed: 02/02/2025]
Abstract
Disorders affecting the retina pose a considerable risk to human vision, with an array of factors including aging, diabetes, hypertension, obesity, ocular trauma, and tobacco use exacerbating this issue in contemporary times. Optical coherence tomography (OCT) is a rapidly developing imaging modality that is capable of identifying early signs of vascular, ocular, and central nervous system abnormalities. OCT can diagnose retinal diseases through image classification, but quantifying the laceration area requires image segmentation. To overcome this obstacle, we have developed an innovative deep learning framework that can perform both tasks simultaneously. The suggested framework employs a parallel mask-guided convolutional neural network (PM-CNN) for the classification of OCT B-scans and a grade activation map (GAM) output from the PM-CNN to help a V-Net network (GAM V-Net) to segment retinal lacerations. The guiding mask for the PM-CNN is obtained from the auxiliary segmentation job. The effectiveness of the dual framework was evaluated using a combined dataset that encompassed four publicly accessible datasets along with an additional real-time dataset. This compilation included 11 categories of retinal diseases. The four publicly available datasets provided a robust foundation for the validation of the dual framework, while the real-time dataset enabled the framework's performance to be assessed on a broader range of retinal disease categories. The segmentation Dice coefficient was 78.33±0.15%, while the classification accuracy was 99.10±0.10%. The model's ability to effectively segment retinal fluids and identify retinal lacerations on a different dataset was an excellent demonstration of its generalizability.
Collapse
|
7
|
Zhang X, Han Y. An Extremely Sparse Tomography Reconstruction of a Multispectral Temperature Field without Any a Priori Knowledge. SENSORS (BASEL, SWITZERLAND) 2024; 24:5264. [PMID: 39204959 PMCID: PMC11360723 DOI: 10.3390/s24165264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/02/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
When undertaking optical sparse projection reconstruction, the reconstruction of the tested field often requires the utilization of a priori knowledge to compensate for the lack of information due to the sparse projection angle. In order to reconstruct the radiation field of unknown materials or in situations where a priori knowledge cannot be obtained, this paper proposes an extremely sparse tomography multispectral temperature field reconstruction algorithm that analyzes the similarity (the similarity here compares and calculates the Euclidean distance of the spectral emissivity values at various wavelengths between different spectral curves) of radiation characteristics of materials under the same pressure and concentration but different temperature, describes the similarity between the radiation information of the tested field using the dynamic time warping (DTW) algorithm, and uses the similarity sum of the radiation information among the subregions of the temperature field as the optimization objective. This is combined with the equation-constrained optimization algorithm and multispectral thermometry to establish the statistical law between the missing information and finally realize the reconstruction of the temperature field. Simulation experiments show that, without any a priori knowledge, the method in this paper can realize reconstruction of the temperature field with an accuracy of 1.53-12.05% under two projection angles and has fewer projection angles and stronger robustness than other methods.
Collapse
Affiliation(s)
- Xuan Zhang
- School of Information and Communication Engineering, North University of China, Taiyuan 030051, China;
| | - Yan Han
- Shanxi Key Laboratory of Signal Capturing & Processing, North University of China, Taiyuan 030051, China
- State Key Laboratory of Dynamic Testing Technology, North University of China, Taiyuan 030051, China
| |
Collapse
|
8
|
Parmar UPS, Surico PL, Singh RB, Romano F, Salati C, Spadea L, Musa M, Gagliano C, Mori T, Zeppieri M. Artificial Intelligence (AI) for Early Diagnosis of Retinal Diseases. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:527. [PMID: 38674173 PMCID: PMC11052176 DOI: 10.3390/medicina60040527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/12/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024]
Abstract
Artificial intelligence (AI) has emerged as a transformative tool in the field of ophthalmology, revolutionizing disease diagnosis and management. This paper provides a comprehensive overview of AI applications in various retinal diseases, highlighting its potential to enhance screening efficiency, facilitate early diagnosis, and improve patient outcomes. Herein, we elucidate the fundamental concepts of AI, including machine learning (ML) and deep learning (DL), and their application in ophthalmology, underscoring the significance of AI-driven solutions in addressing the complexity and variability of retinal diseases. Furthermore, we delve into the specific applications of AI in retinal diseases such as diabetic retinopathy (DR), age-related macular degeneration (AMD), Macular Neovascularization, retinopathy of prematurity (ROP), retinal vein occlusion (RVO), hypertensive retinopathy (HR), Retinitis Pigmentosa, Stargardt disease, best vitelliform macular dystrophy, and sickle cell retinopathy. We focus on the current landscape of AI technologies, including various AI models, their performance metrics, and clinical implications. Furthermore, we aim to address challenges and pitfalls associated with the integration of AI in clinical practice, including the "black box phenomenon", biases in data representation, and limitations in comprehensive patient assessment. In conclusion, this review emphasizes the collaborative role of AI alongside healthcare professionals, advocating for a synergistic approach to healthcare delivery. It highlights the importance of leveraging AI to augment, rather than replace, human expertise, thereby maximizing its potential to revolutionize healthcare delivery, mitigate healthcare disparities, and improve patient outcomes in the evolving landscape of medicine.
Collapse
Affiliation(s)
| | - Pier Luigi Surico
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
- Department of Ophthalmology, Campus Bio-Medico University, 00128 Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Rohan Bir Singh
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Francesco Romano
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, p.le S. Maria della Misericordia 15, 33100 Udine, Italy
| | - Leopoldo Spadea
- Eye Clinic, Policlinico Umberto I, “Sapienza” University of Rome, 00142 Rome, Italy
| | - Mutali Musa
- Department of Optometry, University of Benin, Benin City 300238, Edo State, Nigeria
| | - Caterina Gagliano
- Faculty of Medicine and Surgery, University of Enna “Kore”, Piazza dell’Università, 94100 Enna, Italy
- Eye Clinic, Catania University, San Marco Hospital, Viale Carlo Azeglio Ciampi, 95121 Catania, Italy
| | - Tommaso Mori
- Department of Ophthalmology, Campus Bio-Medico University, 00128 Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
- Department of Ophthalmology, University of California San Diego, La Jolla, CA 92122, USA
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, p.le S. Maria della Misericordia 15, 33100 Udine, Italy
| |
Collapse
|
9
|
Cornelio A, Collazo Martinez A, Lu H, Jones C, Kashani AH. Rigid alignment method for secondary analyses of optical coherence tomography volumes. BIOMEDICAL OPTICS EXPRESS 2024; 15:938-952. [PMID: 38404338 PMCID: PMC10890897 DOI: 10.1364/boe.508123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/27/2024]
Abstract
Optical coherence tomography (OCT) provides micron level resolution of retinal tissue and is widely used in ophthalmology. Millions of pre-existing OCT images are available from research and clinical databases. Analysis of this data often requires or can benefit significantly from image registration and reduction of speckle noise. One method of reducing noise is to align and average multiple OCT scans together. We propose to use surface feature information and whole volume information to create a novel and simple pipeline that can rigidly align, and average multiple previously acquired 3D OCT volumes from a commercially available OCT device. This pipeline significantly improves both image quality and visualization of clinically relevant image features over single, unaligned volumes from the commercial scanner.
Collapse
Affiliation(s)
- Andrew Cornelio
- Wilmer Eye Institute, Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | | | - Hanzhang Lu
- Department of Radiology and Radiological Science, Johns Hopkins University Hospital, Baltimore, MD 21287, USA
| | - Craig Jones
- Wilmer Eye Institute, Johns Hopkins Hospital, Baltimore, MD 21287, USA
- Department of Radiology and Radiological Science, Johns Hopkins University Hospital, Baltimore, MD 21287, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Amir H Kashani
- Wilmer Eye Institute, Johns Hopkins Hospital, Baltimore, MD 21287, USA
- Department of Biomedical Engineering, Johns Hopkins Hospital, Baltimore, MD 21287, USA
| |
Collapse
|
10
|
Abd El-Khalek AA, Balaha HM, Alghamdi NS, Ghazal M, Khalil AT, Abo-Elsoud MEA, El-Baz A. A concentrated machine learning-based classification system for age-related macular degeneration (AMD) diagnosis using fundus images. Sci Rep 2024; 14:2434. [PMID: 38287062 PMCID: PMC10825213 DOI: 10.1038/s41598-024-52131-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/14/2024] [Indexed: 01/31/2024] Open
Abstract
The increase in eye disorders among older individuals has raised concerns, necessitating early detection through regular eye examinations. Age-related macular degeneration (AMD), a prevalent condition in individuals over 45, is a leading cause of vision impairment in the elderly. This paper presents a comprehensive computer-aided diagnosis (CAD) framework to categorize fundus images into geographic atrophy (GA), intermediate AMD, normal, and wet AMD categories. This is crucial for early detection and precise diagnosis of age-related macular degeneration (AMD), enabling timely intervention and personalized treatment strategies. We have developed a novel system that extracts both local and global appearance markers from fundus images. These markers are obtained from the entire retina and iso-regions aligned with the optical disc. Applying weighted majority voting on the best classifiers improves performance, resulting in an accuracy of 96.85%, sensitivity of 93.72%, specificity of 97.89%, precision of 93.86%, F1 of 93.72%, ROC of 95.85%, balanced accuracy of 95.81%, and weighted sum of 95.38%. This system not only achieves high accuracy but also provides a detailed assessment of the severity of each retinal region. This approach ensures that the final diagnosis aligns with the physician's understanding of AMD, aiding them in ongoing treatment and follow-up for AMD patients.
Collapse
Affiliation(s)
- Aya A Abd El-Khalek
- Communications and Electronics Engineering Department, Nile Higher Institute for Engineering and Technology, Mansoura, Egypt
| | - Hossam Magdy Balaha
- BioImaging Lab, Department of Bioengineering, J.B. Speed School of Engineering, University of Louisville, Louisville, KY, USA
| | - Norah Saleh Alghamdi
- Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mohammed Ghazal
- Electrical, Computer, and Biomedical Engineering Depatrment, Abu Dhabi University, Abu Dhabi, UAE
| | - Abeer T Khalil
- Communications and Electronics Engineering Department, Faculty of Engineering, Mansoura University, Mansoura, Egypt
| | - Mohy Eldin A Abo-Elsoud
- Communications and Electronics Engineering Department, Faculty of Engineering, Mansoura University, Mansoura, Egypt
| | - Ayman El-Baz
- BioImaging Lab, Department of Bioengineering, J.B. Speed School of Engineering, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
11
|
Farahat IS, Sharafeldeen A, Ghazal M, Alghamdi NS, Mahmoud A, Connelly J, van Bogaert E, Zia H, Tahtouh T, Aladrousy W, Tolba AE, Elmougy S, El-Baz A. An AI-based novel system for predicting respiratory support in COVID-19 patients through CT imaging analysis. Sci Rep 2024; 14:851. [PMID: 38191606 PMCID: PMC10774502 DOI: 10.1038/s41598-023-51053-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/29/2023] [Indexed: 01/10/2024] Open
Abstract
The proposed AI-based diagnostic system aims to predict the respiratory support required for COVID-19 patients by analyzing the correlation between COVID-19 lesions and the level of respiratory support provided to the patients. Computed tomography (CT) imaging will be used to analyze the three levels of respiratory support received by the patient: Level 0 (minimum support), Level 1 (non-invasive support such as soft oxygen), and Level 2 (invasive support such as mechanical ventilation). The system will begin by segmenting the COVID-19 lesions from the CT images and creating an appearance model for each lesion using a 2D, rotation-invariant, Markov-Gibbs random field (MGRF) model. Three MGRF-based models will be created, one for each level of respiratory support. This suggests that the system will be able to differentiate between different levels of severity in COVID-19 patients. The system will decide for each patient using a neural network-based fusion system, which combines the estimates of the Gibbs energy from the three MGRF-based models. The proposed system were assessed using 307 COVID-19-infected patients, achieving an accuracy of [Formula: see text], a sensitivity of [Formula: see text], and a specificity of [Formula: see text], indicating a high level of prediction accuracy.
Collapse
Affiliation(s)
- Ibrahim Shawky Farahat
- Department of Computer Science, Faculty of Computers and Information, Mansoura University, Mansoura, Egypt
| | | | - Mohammed Ghazal
- Electrical, Computer and Biomedical Engineering Department, Abu Dhabi University, Abu Dhabi, UAE
| | - Norah Saleh Alghamdi
- Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ali Mahmoud
- Department of Bioengineering, University of Louisville, Louisville, USA
| | - James Connelly
- Department of Radiology, University of Louisville, Louisville, USA
| | - Eric van Bogaert
- Department of Radiology, University of Louisville, Louisville, USA
| | - Huma Zia
- Electrical, Computer and Biomedical Engineering Department, Abu Dhabi University, Abu Dhabi, UAE
| | - Tania Tahtouh
- College of Health Sciences, Abu Dhabi University, Abu Dhabi, UAE
| | - Waleed Aladrousy
- Department of Computer Science, Faculty of Computers and Information, Mansoura University, Mansoura, Egypt
| | - Ahmed Elsaid Tolba
- Department of Computer Science, Faculty of Computers and Information, Mansoura University, Mansoura, Egypt
- The Higher Institute of Engineering and Automotive Technology and Energy, Kafr El Sheikh, Egypt
| | - Samir Elmougy
- Department of Computer Science, Faculty of Computers and Information, Mansoura University, Mansoura, Egypt
| | - Ayman El-Baz
- Department of Bioengineering, University of Louisville, Louisville, USA.
| |
Collapse
|
12
|
Heger KA, Waldstein SM. Artificial intelligence in retinal imaging: current status and future prospects. Expert Rev Med Devices 2024; 21:73-89. [PMID: 38088362 DOI: 10.1080/17434440.2023.2294364] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
INTRODUCTION The steadily growing and aging world population, in conjunction with continuously increasing prevalences of vision-threatening retinal diseases, is placing an increasing burden on the global healthcare system. The main challenges within retinology involve identifying the comparatively few patients requiring therapy within the large mass, the assurance of comprehensive screening for retinal disease and individualized therapy planning. In order to sustain high-quality ophthalmic care in the future, the incorporation of artificial intelligence (AI) technologies into our clinical practice represents a potential solution. AREAS COVERED This review sheds light onto already realized and promising future applications of AI techniques in retinal imaging. The main attention is directed at the application in diabetic retinopathy and age-related macular degeneration. The principles of use in disease screening, grading, therapeutic planning and prediction of future developments are explained based on the currently available literature. EXPERT OPINION The recent accomplishments of AI in retinal imaging indicate that its implementation into our daily practice is likely to fundamentally change the ophthalmic healthcare system and bring us one step closer to the goal of individualized treatment. However, it must be emphasized that the aim is to optimally support clinicians by gradually incorporating AI approaches, rather than replacing ophthalmologists.
Collapse
Affiliation(s)
- Katharina A Heger
- Department of Ophthalmology, Landesklinikum Mistelbach-Gaenserndorf, Mistelbach, Austria
| | - Sebastian M Waldstein
- Department of Ophthalmology, Landesklinikum Mistelbach-Gaenserndorf, Mistelbach, Austria
| |
Collapse
|
13
|
Baharlouei Z, Rabbani H, Plonka G. Wavelet scattering transform application in classification of retinal abnormalities using OCT images. Sci Rep 2023; 13:19013. [PMID: 37923770 PMCID: PMC10624695 DOI: 10.1038/s41598-023-46200-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/29/2023] [Indexed: 11/06/2023] Open
Abstract
To assist ophthalmologists in diagnosing retinal abnormalities, Computer Aided Diagnosis has played a significant role. In this paper, a particular Convolutional Neural Network based on Wavelet Scattering Transform (WST) is used to detect one to four retinal abnormalities from Optical Coherence Tomography (OCT) images. Predefined wavelet filters in this network decrease the computation complexity and processing time compared to deep learning methods. We use two layers of the WST network to obtain a direct and efficient model. WST generates a sparse representation of the images which is translation-invariant and stable concerning local deformations. Next, a Principal Component Analysis classifies the extracted features. We evaluate the model using four publicly available datasets to have a comprehensive comparison with the literature. The accuracies of classifying the OCT images of the OCTID dataset into two and five classes were [Formula: see text] and [Formula: see text], respectively. We achieved an accuracy of [Formula: see text] in detecting Diabetic Macular Edema from Normal ones using the TOPCON device-based dataset. Heidelberg and Duke datasets contain DME, Age-related Macular Degeneration, and Normal classes, in which we achieved accuracy of [Formula: see text] and [Formula: see text], respectively. A comparison of our results with the state-of-the-art models shows that our model outperforms these models for some assessments or achieves nearly the best results reported so far while having a much smaller computational complexity.
Collapse
Affiliation(s)
- Zahra Baharlouei
- Medical Image and Signal Processing Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Rabbani
- Medical Image and Signal Processing Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Gerlind Plonka
- Institute for Numerical and Applied Mathematics, Georg-August-University of Goettingen, Göttingen, Germany
| |
Collapse
|
14
|
Saleh GA, Batouty NM, Gamal A, Elnakib A, Hamdy O, Sharafeldeen A, Mahmoud A, Ghazal M, Yousaf J, Alhalabi M, AbouEleneen A, Tolba AE, Elmougy S, Contractor S, El-Baz A. Impact of Imaging Biomarkers and AI on Breast Cancer Management: A Brief Review. Cancers (Basel) 2023; 15:5216. [PMID: 37958390 PMCID: PMC10650187 DOI: 10.3390/cancers15215216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/13/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023] Open
Abstract
Breast cancer stands out as the most frequently identified malignancy, ranking as the fifth leading cause of global cancer-related deaths. The American College of Radiology (ACR) introduced the Breast Imaging Reporting and Data System (BI-RADS) as a standard terminology facilitating communication between radiologists and clinicians; however, an update is now imperative to encompass the latest imaging modalities developed subsequent to the 5th edition of BI-RADS. Within this review article, we provide a concise history of BI-RADS, delve into advanced mammography techniques, ultrasonography (US), magnetic resonance imaging (MRI), PET/CT images, and microwave breast imaging, and subsequently furnish comprehensive, updated insights into Molecular Breast Imaging (MBI), diagnostic imaging biomarkers, and the assessment of treatment responses. This endeavor aims to enhance radiologists' proficiency in catering to the personalized needs of breast cancer patients. Lastly, we explore the augmented benefits of artificial intelligence (AI), machine learning (ML), and deep learning (DL) applications in segmenting, detecting, and diagnosing breast cancer, as well as the early prediction of the response of tumors to neoadjuvant chemotherapy (NAC). By assimilating state-of-the-art computer algorithms capable of deciphering intricate imaging data and aiding radiologists in rendering precise and effective diagnoses, AI has profoundly revolutionized the landscape of breast cancer radiology. Its vast potential holds the promise of bolstering radiologists' capabilities and ameliorating patient outcomes in the realm of breast cancer management.
Collapse
Affiliation(s)
- Gehad A. Saleh
- Diagnostic and Interventional Radiology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; (G.A.S.)
| | - Nihal M. Batouty
- Diagnostic and Interventional Radiology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; (G.A.S.)
| | - Abdelrahman Gamal
- Computer Science Department, Faculty of Computers and Information, Mansoura University, Mansoura 35516, Egypt (A.E.T.)
| | - Ahmed Elnakib
- Electrical and Computer Engineering Department, School of Engineering, Penn State Erie, The Behrend College, Erie, PA 16563, USA;
| | - Omar Hamdy
- Surgical Oncology Department, Oncology Centre, Mansoura University, Mansoura 35516, Egypt;
| | - Ahmed Sharafeldeen
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA
| | - Ali Mahmoud
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA
| | - Mohammed Ghazal
- Electrical, Computer, and Biomedical Engineering Department, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates; (M.G.)
| | - Jawad Yousaf
- Electrical, Computer, and Biomedical Engineering Department, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates; (M.G.)
| | - Marah Alhalabi
- Electrical, Computer, and Biomedical Engineering Department, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates; (M.G.)
| | - Amal AbouEleneen
- Computer Science Department, Faculty of Computers and Information, Mansoura University, Mansoura 35516, Egypt (A.E.T.)
| | - Ahmed Elsaid Tolba
- Computer Science Department, Faculty of Computers and Information, Mansoura University, Mansoura 35516, Egypt (A.E.T.)
- The Higher Institute of Engineering and Automotive Technology and Energy, New Heliopolis, Cairo 11829, Egypt
| | - Samir Elmougy
- Computer Science Department, Faculty of Computers and Information, Mansoura University, Mansoura 35516, Egypt (A.E.T.)
| | - Sohail Contractor
- Department of Radiology, University of Louisville, Louisville, KY 40202, USA
| | - Ayman El-Baz
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA
| |
Collapse
|
15
|
Sampath Kumar A, Schlosser T, Langner H, Ritter M, Kowerko D. Improving OCT Image Segmentation of Retinal Layers by Utilizing a Machine Learning Based Multistage System of Stacked Multiscale Encoders and Decoders. Bioengineering (Basel) 2023; 10:1177. [PMID: 37892907 PMCID: PMC10603937 DOI: 10.3390/bioengineering10101177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Optical coherence tomography (OCT)-based retinal imagery is often utilized to determine influential factors in patient progression and treatment, for which the retinal layers of the human eye are investigated to assess a patient's health status and eyesight. In this contribution, we propose a machine learning (ML)-based multistage system of stacked multiscale encoders and decoders for the image segmentation of OCT imagery of the retinal layers to enable the following evaluation regarding the physiological and pathological states. Our proposed system's results highlight its benefits compared to currently investigated approaches by combining commonly deployed methods from deep learning (DL) while utilizing deep neural networks (DNN). We conclude that by stacking multiple multiscale encoders and decoders, improved scores for the image segmentation task can be achieved. Our retinal-layer-based segmentation results in a final segmentation performance of up to 82.25±0.74% for the Sørensen-Dice coefficient, outperforming the current best single-stage model by 1.55% with a score of 80.70±0.20%, given the evaluated peripapillary OCT data set. Additionally, we provide results on the data sets Duke SD-OCT, Heidelberg, and UMN to illustrate our model's performance on especially noisy data sets.
Collapse
Affiliation(s)
- Arunodhayan Sampath Kumar
- Junior Professorship of Media Computing, Chemnitz University of Technology, 09107 Chemnitz, Germany; (A.S.K.); (T.S.)
| | - Tobias Schlosser
- Junior Professorship of Media Computing, Chemnitz University of Technology, 09107 Chemnitz, Germany; (A.S.K.); (T.S.)
| | - Holger Langner
- Professorship of Media Informatics, University of Applied Sciences Mittweida, 09648 Mittweida, Germany; (H.L.); (M.R.)
| | - Marc Ritter
- Professorship of Media Informatics, University of Applied Sciences Mittweida, 09648 Mittweida, Germany; (H.L.); (M.R.)
| | - Danny Kowerko
- Junior Professorship of Media Computing, Chemnitz University of Technology, 09107 Chemnitz, Germany; (A.S.K.); (T.S.)
| |
Collapse
|
16
|
Verejan V. Advancing Diabetic Retinopathy Diagnosis: Leveraging Optical Coherence Tomography Imaging with Convolutional Neural Networks. Rom J Ophthalmol 2023; 67:398-402. [PMID: 38239418 PMCID: PMC10793374 DOI: 10.22336/rjo.2023.63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2023] [Indexed: 01/22/2024] Open
Abstract
Diabetic retinopathy (DR) is a vision-threatening complication of diabetes, necessitating early and accurate diagnosis. The combination of optical coherence tomography (OCT) imaging with convolutional neural networks (CNNs) has emerged as a promising approach for enhancing DR diagnosis. OCT provides detailed retinal morphology information, while CNNs analyze OCT images for automated detection and classification of DR. This paper reviews the current research on OCT imaging and CNNs for DR diagnosis, discussing their technical aspects and suitability. It explores CNN applications in detecting lesions, segmenting microaneurysms, and assessing disease severity, showing high sensitivity and accuracy. CNN models outperform traditional methods and rival expert ophthalmologists' results. However, challenges such as dataset availability and model interpretability remain. Future directions include multimodal imaging integration and real-time, point-of-care CNN systems for DR screening. The integration of OCT imaging with CNNs has transformative potential in DR diagnosis, facilitating early intervention, personalized treatments, and improved patient outcomes. Abbreviations: DR = Diabetic Retinopathy, OCT = Optical Coherence Tomography, CNN = Convolutional Neural Network, CMV = Cytomegalovirus, PDR = Proliferative Diabetic Retinopathy, AMD = Age-Related Macular Degeneration, VEGF = vascular endothelial growth factor, RAP = Retinal Angiomatous Proliferation, OCTA = OCT Angiography, AI = Artificial Intelligence.
Collapse
Affiliation(s)
- Victoria Verejan
- Department of Ophthalmology, “N. Testemițanu” State University of Medicine and Pharmacy, Chişinău, Republic of Moldova
| |
Collapse
|
17
|
Liu YF, Ji YK, Fei FQ, Chen NM, Zhu ZT, Fei XZ. Research progress in artificial intelligence assisted diabetic retinopathy diagnosis. Int J Ophthalmol 2023; 16:1395-1405. [PMID: 37724288 PMCID: PMC10475636 DOI: 10.18240/ijo.2023.09.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/14/2023] [Indexed: 09/20/2023] Open
Abstract
Diabetic retinopathy (DR) is one of the most common retinal vascular diseases and one of the main causes of blindness worldwide. Early detection and treatment can effectively delay vision decline and even blindness in patients with DR. In recent years, artificial intelligence (AI) models constructed by machine learning and deep learning (DL) algorithms have been widely used in ophthalmology research, especially in diagnosing and treating ophthalmic diseases, particularly DR. Regarding DR, AI has mainly been used in its diagnosis, grading, and lesion recognition and segmentation, and good research and application results have been achieved. This study summarizes the research progress in AI models based on machine learning and DL algorithms for DR diagnosis and discusses some limitations and challenges in AI research.
Collapse
Affiliation(s)
- Yun-Fang Liu
- Department of Ophthalmology, First People's Hospital of Huzhou, Huzhou University, Huzhou 313000, Zhejiang Province, China
| | - Yu-Ke Ji
- Eye Hospital, Nanjing Medical University, Nanjing 210000, Jiangsu Province, China
| | - Fang-Qin Fei
- Department of Endocrinology, First People's Hospital of Huzhou, Huzhou University, Huzhou 313000, Zhejiang Province, China
| | - Nai-Mei Chen
- Department of Ophthalmology, Huai'an Hospital of Huai'an City, Huai'an 223000, Jiangsu Province, China
| | - Zhen-Tao Zhu
- Department of Ophthalmology, Huai'an Hospital of Huai'an City, Huai'an 223000, Jiangsu Province, China
| | - Xing-Zhen Fei
- Department of Endocrinology, First People's Hospital of Huzhou, Huzhou University, Huzhou 313000, Zhejiang Province, China
| |
Collapse
|
18
|
Akinniyi O, Rahman MM, Sandhu HS, El-Baz A, Khalifa F. Multi-Stage Classification of Retinal OCT Using Multi-Scale Ensemble Deep Architecture. Bioengineering (Basel) 2023; 10:823. [PMID: 37508850 PMCID: PMC10376573 DOI: 10.3390/bioengineering10070823] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/01/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Accurate noninvasive diagnosis of retinal disorders is required for appropriate treatment or precision medicine. This work proposes a multi-stage classification network built on a multi-scale (pyramidal) feature ensemble architecture for retinal image classification using optical coherence tomography (OCT) images. First, a scale-adaptive neural network is developed to produce multi-scale inputs for feature extraction and ensemble learning. The larger input sizes yield more global information, while the smaller input sizes focus on local details. Then, a feature-rich pyramidal architecture is designed to extract multi-scale features as inputs using DenseNet as the backbone. The advantage of the hierarchical structure is that it allows the system to extract multi-scale, information-rich features for the accurate classification of retinal disorders. Evaluation on two public OCT datasets containing normal and abnormal retinas (e.g., diabetic macular edema (DME), choroidal neovascularization (CNV), age-related macular degeneration (AMD), and Drusen) and comparison against recent networks demonstrates the advantages of the proposed architecture's ability to produce feature-rich classification with average accuracy of 97.78%, 96.83%, and 94.26% for the first (binary) stage, second (three-class) stage, and all-at-once (four-class) classification, respectively, using cross-validation experiments using the first dataset. In the second dataset, our system showed an overall accuracy, sensitivity, and specificity of 99.69%, 99.71%, and 99.87%, respectively. Overall, the tangible advantages of the proposed network for enhanced feature learning might be used in various medical image classification tasks where scale-invariant features are crucial for precise diagnosis.
Collapse
Affiliation(s)
- Oluwatunmise Akinniyi
- Department of Computer Science, School of Computer, Mathematical and Natural Sciences, Morgan State University, Baltimore, MD 21251, USA
| | - Md Mahmudur Rahman
- Department of Computer Science, School of Computer, Mathematical and Natural Sciences, Morgan State University, Baltimore, MD 21251, USA
| | - Harpal Singh Sandhu
- Bioengineering Department, University of Louisville, Louisville, KY 20292, USA
| | - Ayman El-Baz
- Bioengineering Department, University of Louisville, Louisville, KY 20292, USA
| | - Fahmi Khalifa
- Electronics and Communications Engineering Department, Mansoura University, Mansoura 35516, Egypt
- Electrical and Computer Engineering Department, Morgan State University, Baltimore MD 21251, USA
| |
Collapse
|
19
|
Huda NU, Salam AA, Alghamdi NS, Zeb J, Akram MU. Proliferative Diabetic Retinopathy Diagnosis Using Varying-Scales Filter Banks and Double-Layered Thresholding. Diagnostics (Basel) 2023; 13:2231. [PMID: 37443625 DOI: 10.3390/diagnostics13132231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 07/15/2023] Open
Abstract
Diabetic retinopathy is one of the abnormalities of the retina in which a diabetic patient suffers from severe vision loss due to an affected retina. Proliferative diabetic retinopathy (PDR) is the final and most critical stage of diabetic retinopathy. Abnormal and fragile blood vessels start to grow on the surface of the retina at this stage. It causes retinal detachment, which may lead to complete blindness in severe cases. In this paper, a novel method is proposed for the detection and grading of neovascularization. The proposed system first performs pre-processing on input retinal images to enhance the vascular pattern, followed by blood vessel segmentation and optic disc localization. Then various features are tested on the candidate regions with different thresholds. In this way, positive and negative advanced diabetic retinopathy cases are separated. Optic disc coordinates are applied for the grading of neovascularization as NVD or NVE. The proposed algorithm improves the quality of automated diagnostic systems by eliminating normal blood vessels and exudates that might cause hindrances in accurate disease detection, thus resulting in more accurate detection of abnormal blood vessels. The evaluation of the proposed system has been carried out using performance parameters such as sensitivity, specificity, accuracy, and positive predictive value (PPV) on a publicly available standard retinal image database and one of the locally available databases. The proposed algorithm gives an accuracy of 98.5% and PPV of 99.8% on MESSIDOR and an accuracy of 96.5% and PPV of 100% on the local database.
Collapse
Affiliation(s)
- Noor Ul Huda
- Center for Advanced Studies in Telecommunications (CAST), COMSATS Institute of Information Technology, Islamabad 45550, Pakistan
| | - Anum Abdul Salam
- Computer and Software Engineering Department, College of Electrical and Mechanical Engineering, National University of Sciences and Technology, Islamabad 24090, Pakistan
| | - Norah Saleh Alghamdi
- Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Jahan Zeb
- Computer and Software Engineering Department, College of Electrical and Mechanical Engineering, National University of Sciences and Technology, Islamabad 24090, Pakistan
| | - Muhammad Usman Akram
- Computer and Software Engineering Department, College of Electrical and Mechanical Engineering, National University of Sciences and Technology, Islamabad 24090, Pakistan
| |
Collapse
|
20
|
Hassan E, Elmougy S, Ibraheem MR, Hossain MS, AlMutib K, Ghoneim A, AlQahtani SA, Talaat FM. Enhanced Deep Learning Model for Classification of Retinal Optical Coherence Tomography Images. SENSORS (BASEL, SWITZERLAND) 2023; 23:5393. [PMID: 37420558 DOI: 10.3390/s23125393] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/15/2023] [Accepted: 05/25/2023] [Indexed: 07/09/2023]
Abstract
Retinal optical coherence tomography (OCT) imaging is a valuable tool for assessing the condition of the back part of the eye. The condition has a great effect on the specificity of diagnosis, the monitoring of many physiological and pathological procedures, and the response and evaluation of therapeutic effectiveness in various fields of clinical practices, including primary eye diseases and systemic diseases such as diabetes. Therefore, precise diagnosis, classification, and automated image analysis models are crucial. In this paper, we propose an enhanced optical coherence tomography (EOCT) model to classify retinal OCT based on modified ResNet (50) and random forest algorithms, which are used in the proposed study's training strategy to enhance performance. The Adam optimizer is applied during the training process to increase the efficiency of the ResNet (50) model compared with the common pre-trained models, such as spatial separable convolutions and visual geometry group (VGG) (16). The experimentation results show that the sensitivity, specificity, precision, negative predictive value, false discovery rate, false negative rate accuracy, and Matthew's correlation coefficient are 0.9836, 0.9615, 0.9740, 0.9756, 0.0385, 0.0260, 0.0164, 0.9747, 0.9788, and 0.9474, respectively.
Collapse
Affiliation(s)
- Esraa Hassan
- Faculty of Artificial Intelligence, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Samir Elmougy
- Department of Computer Science, Faculty of Computers and Information, Mansoura University, Mansoura 35516, Egypt
| | - Mai R Ibraheem
- Department of Information Technology, Faculty of Computers and information, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - M Shamim Hossain
- Research Chair of Pervasive and Mobile Computing, Department of Software Engineering, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia
| | - Khalid AlMutib
- Department of Software Engineering, College of Computer and Information Sciences, King Saud University, Riyadh 11574, Saudi Arabia
| | - Ahmed Ghoneim
- Research Chair of Pervasive and Mobile Computing, Department of Software Engineering, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia
| | - Salman A AlQahtani
- Research Chair of Pervasive and Mobile Computing, Department of Computer Engineering, College of Computer and Information Sciences, King Saud University, Riyadh 11574, Saudi Arabia
| | - Fatma M Talaat
- Faculty of Artificial Intelligence, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| |
Collapse
|
21
|
Ji Y, Ji Y, Liu Y, Zhao Y, Zhang L. Research progress on diagnosing retinal vascular diseases based on artificial intelligence and fundus images. Front Cell Dev Biol 2023; 11:1168327. [PMID: 37056999 PMCID: PMC10086262 DOI: 10.3389/fcell.2023.1168327] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
As the only blood vessels that can directly be seen in the whole body, pathological changes in retinal vessels are related to the metabolic state of the whole body and many systems, which seriously affect the vision and quality of life of patients. Timely diagnosis and treatment are key to improving vision prognosis. In recent years, with the rapid development of artificial intelligence, the application of artificial intelligence in ophthalmology has become increasingly extensive and in-depth, especially in the field of retinal vascular diseases. Research study results based on artificial intelligence and fundus images are remarkable and provides a great possibility for early diagnosis and treatment. This paper reviews the recent research progress on artificial intelligence in retinal vascular diseases (including diabetic retinopathy, hypertensive retinopathy, retinal vein occlusion, retinopathy of prematurity, and age-related macular degeneration). The limitations and challenges of the research process are also discussed.
Collapse
Affiliation(s)
- Yuke Ji
- The Laboratory of Artificial Intelligence and Bigdata in Ophthalmology, Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China
| | - Yun Ji
- Affiliated Hospital of Shandong University of traditional Chinese Medicine, Jinan, Shandong, China
| | - Yunfang Liu
- Department of Ophthalmology, The First People’s Hospital of Huzhou, Huzhou, Zhejiang, China
| | - Ying Zhao
- Affiliated Hospital of Shandong University of traditional Chinese Medicine, Jinan, Shandong, China
- *Correspondence: Liya Zhang, ; Ying Zhao,
| | - Liya Zhang
- Department of Ophthalmology, The First People’s Hospital of Huzhou, Huzhou, Zhejiang, China
- *Correspondence: Liya Zhang, ; Ying Zhao,
| |
Collapse
|
22
|
Karn PK, Abdulla WH. On Machine Learning in Clinical Interpretation of Retinal Diseases Using OCT Images. Bioengineering (Basel) 2023; 10:bioengineering10040407. [PMID: 37106594 PMCID: PMC10135895 DOI: 10.3390/bioengineering10040407] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Optical coherence tomography (OCT) is a noninvasive imaging technique that provides high-resolution cross-sectional retina images, enabling ophthalmologists to gather crucial information for diagnosing various retinal diseases. Despite its benefits, manual analysis of OCT images is time-consuming and heavily dependent on the personal experience of the analyst. This paper focuses on using machine learning to analyse OCT images in the clinical interpretation of retinal diseases. The complexity of understanding the biomarkers present in OCT images has been a challenge for many researchers, particularly those from nonclinical disciplines. This paper aims to provide an overview of the current state-of-the-art OCT image processing techniques, including image denoising and layer segmentation. It also highlights the potential of machine learning algorithms to automate the analysis of OCT images, reducing time consumption and improving diagnostic accuracy. Using machine learning in OCT image analysis can mitigate the limitations of manual analysis methods and provide a more reliable and objective approach to diagnosing retinal diseases. This paper will be of interest to ophthalmologists, researchers, and data scientists working in the field of retinal disease diagnosis and machine learning. By presenting the latest advancements in OCT image analysis using machine learning, this paper will contribute to the ongoing efforts to improve the diagnostic accuracy of retinal diseases.
Collapse
|
23
|
Development of a Computer System for Automatically Generating a Laser Photocoagulation Plan to Improve the Retinal Coagulation Quality in the Treatment of Diabetic Retinopathy. Symmetry (Basel) 2023. [DOI: 10.3390/sym15020287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In this article, the development of a computer system for high-tech medical uses in ophthalmology is proposed. An overview of the main methods and algorithms that formed the basis of the coagulation plan planning system is presented. The system provides the formation of a more effective plan for laser coagulation in comparison with the use of existing coagulation techniques. An analysis of monopulse- and pattern-based laser coagulation techniques in the treatment of diabetic retinopathy has shown that modern treatment methods do not provide the required efficacy of medical laser coagulation procedures, as the laser energy is nonuniformly distributed across the pigment epithelium and may exert an excessive effect on parts of the retina and anatomical elements. The analysis has shown that the efficacy of retinal laser coagulation for the treatment of diabetic retinopathy is determined by the relative position of coagulates and parameters of laser exposure. In the course of the development of the computer system proposed herein, main stages of processing diagnostic data were identified. They are as follows: the allocation of the laser exposure zone, the evaluation of laser pulse parameters that would be safe for the fundus, mapping a coagulation plan in the laser exposure zone, followed by the analysis of the generated plan for predicting the therapeutic effect. In the course of the study, it was found that the developed algorithms for placing coagulates in the area of laser exposure provide a more uniform distribution of laser energy across the pigment epithelium when compared to monopulse- and pattern-based laser coagulation techniques.
Collapse
|