Požar R, Martin T, Giordani B, Kavcic V. Enhanced functional brain network integration in mild cognitive impairment during cognitive task performance: A compensatory mechanism or a result of neural disinhibition?
Eur J Neurosci 2024;
60:5569-5580. [PMID:
39180174 DOI:
10.1111/ejn.16511]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/16/2024] [Accepted: 08/06/2024] [Indexed: 08/26/2024]
Abstract
Although previous studies have observed increased global network integration during tasks in persons with mild cognitive impairment (MCI), the association between this integration and actual task performance has remained unexplored. Understanding this link is crucial for uncovering the underlying mechanism behind these changes in network integration and their potential role in MCI. Here, to find such a link, we investigated brain network integration derived from electroencephalography recordings during a visual motion discrimination task in older adults with MCI and those with normal cognition. We focused on a critical period just before stimulus presentation, which is known to be important for task performance. Our results revealed that during this period, MCI patients exhibited increased network integration compared to controls. Interestingly, increased integration was associated with worse task performance in the MCI group, suggesting it was not beneficial. No such association was found in the control group. Notably, this difference existed despite similar overall task performance between the groups. This suboptimal integration pattern during the cognitive task might reflect network de-differentiation due to disinhibition in MCI patients. Collectively, our study highlights the potential of analysing network integration during tasks to identify cognitive impairment and suggest a distinct role for network integration in MCI patients compared with healthy controls.
Collapse