1
|
Wang Q, Zhao ZA, Yao KY, Cheng YL, Wong DSH, Wong DWC, Cheung JCW. The Versatility of Biological Field-Effect Transistor-Based Biosensors (BioFETs) in Point-of-Care Diagnostics: Applications and Future Directions for Peritoneal Dialysis Monitoring. BIOSENSORS 2025; 15:193. [PMID: 40136991 PMCID: PMC11940136 DOI: 10.3390/bios15030193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/10/2025] [Accepted: 03/16/2025] [Indexed: 03/27/2025]
Abstract
Peritoneal dialysis (PD) is a vital treatment for end-stage renal disease patients, but its efficacy is often compromised by complications such as infections and peritoneal fibrosis. Biological field-effect transistors (BioFETs) present a promising solution for rapid, sensitive, and non-invasive detection of indicators and biomarkers associated with these complications, potentially enabling early intervention. However, BioFETs are yet to be adopted for PD monitoring. This review presents a forward-looking analysis of the capacity and potential integration of BioFETs into PD management systems, highlighting their capacity to monitor both routine indicators of dialysis efficiency and metabolic status, as well as specific biomarkers for complications such as inflammation and fibrosis. We examine the challenges in adapting BioFETs for PD applications, focusing on key areas for improvement, including sensitivity, specificity, stability, reusability, and clinical integration. Furthermore, we discuss various approaches to address these challenges, which are crucial for developing point-of-care (PoC) and multiplexed wearable devices. These advancements could facilitate continuous, precise, and user-friendly monitoring, potentially revolutionizing PD complication management and enhancing patient care.
Collapse
Affiliation(s)
- Quan Wang
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Zi-An Zhao
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Ke-Yu Yao
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Yuk-Lun Cheng
- Department of Medicine, Alice Ho Miu Ling Nethersole Hospital, Hong Kong
| | - Dexter Siu-Hong Wong
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Duo Wai-Chi Wong
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - James Chung-Wai Cheung
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong
- Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong
| |
Collapse
|
2
|
Cho H, Oh DE, Côté S, Lee CS, Kim TH. Orientation-Guided Immobilization of Probe DNA on swCNT-FET for Enhancing Sensitivity of EcoRV Detection. NANO LETTERS 2024; 24:1901-1908. [PMID: 38147528 DOI: 10.1021/acs.nanolett.3c03877] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
We present a novel approach that integrates electrical measurements with molecular dynamics (MD) simulations to assess the activity of type-II restriction endonucleases, specifically EcoRV. Our approach employs a single-walled carbon nanotube field-effect transistor (swCNT-FET) functionalized with the EcoRV substrate DNA, enabling the detection of enzymatic cleavage events. Notably, we leveraged the methylene blue (MB) tag as an "orientation guide" to immobilize the EcoRV substrate DNA in a specific direction, thereby enhancing the proximity of the DNA cleavage reaction to the swCNT surface and consequently improving the sensitivity in EcoRV detection. We conducted computational modeling to compare the conformations and electrostatic potential (ESP) of MB-tagged DNA with its MB-free counterpart, providing strong support for our electrical measurements. Both conformational and ESP simulations exhibited robust agreement with our experimental data. The inhibitory efficacy of the EcoRV inhibitor aurintricarboxylic acid (ATA) was also evaluated, and the selectivity of the sensing device was examined.
Collapse
Affiliation(s)
- Hyunju Cho
- Department of Chemistry, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Da Eun Oh
- Department of Chemistry, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Sébastien Côté
- Département de Physique, Faculté des Arts et des Sciences, Université de Montréal, Montréal H2 V 0B3, Canada
- Département de Physique, Cégep de Saint-Jérôme, Saint-Jérôme J7Z 4 V2, Canada
| | - Chang-Seuk Lee
- Department of Chemistry, Seoul Women's University, Seoul 01797, Republic of Korea
| | - Tae Hyun Kim
- Department of Chemistry, Soonchunhyang University, Asan 31538, Republic of Korea
| |
Collapse
|
3
|
Jeong S, Son SU, Kim J, Cho SI, Kang T, Kim S, Lim EK, Ko Park SH. Rapid and simultaneous multiple detection of a tripledemic using a dual-gate oxide semiconductor thin-film transistor-based immunosensor. Biosens Bioelectron 2023; 241:115700. [PMID: 37757509 DOI: 10.1016/j.bios.2023.115700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/22/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
The simultaneous infection with a tripledemic-simultaneous infection with influenza A pH1N1 virus (Flu), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and respiratory syncytial virus (RSV)-necessitates the development of accurate and fast multiplex diagnostic tests. The coronavirus disease 2019 (COVID-19) pandemic has emphasized the importance of virus detection. Field-effect transistor (FET)-based immuno-biosensors have a short detection time and do not require labeling or polymerase chain reaction. This study demonstrates the rapid, sensitive detection of influenza A pH1N1, SARS-CoV-2, and RSV using a multiplex immunosensor based on a dual-gate oxide semiconductor thin-film transistor (TFT), a type of FET. The dual-gate oxide TFT was modified by adjusting both top and bottom gate insulators to improve capacitive coupling to approximately 120-fold amplification, exhibiting a high pH sensitivity of about 10 V/pH. The dual-gate oxide TFT-based immunosensor detected the target proteins (hemagglutinin (HA) protein of Flu, spike 1 (S1) protein of SARS-CoV-2, and fusion protein of RSV) of each virus, with a limit of detection of approximately 1 fg/mL. Cultured viruses in phosphate-buffered saline or artificial saliva and clinical nasopharynx samples were detected in 1-μL sample volumes within 60 s. This promising diagnosis could be potentially as point-of-care tests to facilitate a prompt response to future pandemics with high sensitivity and multiplexed detection without pretreatment.
Collapse
Affiliation(s)
- Sehun Jeong
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Seong Uk Son
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; Department of Nanobiotechnology, Korea Research Institute of Bioscience and Biotechnology, School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Jingyu Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Seong-In Cho
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Taejoon Kang
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sunjoo Kim
- Department of Laboratory Medicine, Gyeongsang National University Changwon Hospital, Changwon, 51472, Republic of Korea; Gyeongnam Center for Infectious Disease Control and Prevention, Changwon, 51154, Republic of Korea; Gyeongsang National University College of Medicine, Gyeongsang Institute of Health Sciences, Jinju, 52727, Republic of Korea
| | - Eun-Kyung Lim
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; Department of Nanobiotechnology, Korea Research Institute of Bioscience and Biotechnology, School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Sang-Hee Ko Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
4
|
Zhu R, Figueroa-Miranda G, Zhou L, Hu Z, Lenyk B, Ingebrandt S, Offenhäusser A, Mayer D. A Combined Plasmonic and Electrochemical Aptasensor Based on Gold Nanopit Arrays for the Detection of Human Serum Albumin. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2374. [PMID: 37630959 PMCID: PMC10458775 DOI: 10.3390/nano13162374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/04/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023]
Abstract
Electrochemical and optical platforms are commonly employed in designing biosensors. However, one signal readout can easily lead to inaccuracies due to the effect of nonstandard test procedures, different operators, and experimental environments. We have developed a dual-signal protocol that combined two transducer principles in one aptamer-based biosensor by simultaneously performing electrochemical- and extraordinary optical transmission (EOT)-based plasmonic detection using gold nanopit arrays (AuNpA). Compared with full hole structures, we found that nanopits, that did not fully penetrate the gold film, not only exhibited a better plasmonic bandwidth and refractive index sensitivity both in the finite-difference time-domain simulation and in experiments by shielding the gold/quartz mode but also enlarged the electrochemical active surface area. Therefore, the periodic non-fully penetrating AuNpA were modified with ferrocene-labeled human serum albumin aptamer receptors. The formation of the receptor layer and human serum albumin binding complex induced a conformational change, which resulted in variation in the electron transfer between the electro-active ferrocene units and the AuNpA surface. Simultaneously, the binding event caused a surface plasmon polaritons wavelength shift corresponding to a change in the surface refractive index. Interestingly, although both transducers recorded the same binding process, they led to different limits of detection, dynamic ranges, and sensitivities. The electrochemical transducer showed a dynamic detection range from 1 nM to 600 μM, while the optical transducer covered high concentrations from 100 μM to 600 μM. This study not only provides new insights into the design of plasmonic nanostructures but also potentially opens an exciting avenue for dual-signal disease diagnosis and point-of-care testing applications.
Collapse
Affiliation(s)
- Ruifeng Zhu
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
- Institute of Materials in Electrical Engineering 1, RWTH Aachen University, 52074 Aachen, Germany
| | - Gabriela Figueroa-Miranda
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Lei Zhou
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Ziheng Hu
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Bohdan Lenyk
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
- Department of Physics, University of Konstanz, 78457 Konstanz, Germany
| | - Sven Ingebrandt
- Institute of Materials in Electrical Engineering 1, RWTH Aachen University, 52074 Aachen, Germany
| | - Andreas Offenhäusser
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Dirk Mayer
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| |
Collapse
|