1
|
Grote A, Gjorgjevski M, Carl B, Delev D, Knake S, Menzler K, Nimsky C, Bopp MHA. Frameless Stereotaxy in Stereoelectroencephalography Using Intraoperative Computed Tomography. Brain Sci 2025; 15:184. [PMID: 40002517 PMCID: PMC11853342 DOI: 10.3390/brainsci15020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 01/31/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Pharmacoresistant epilepsy affects approximately one-third of all epilepsy patients, and resective surgery may offer favorable outcomes for carefully selected patients with focal epilepsy. The accurate identification of the epileptogenic zone (EZ) is essential for successful surgery, particularly in cases where non-invasive diagnostics are inconclusive. Invasive diagnostics with stereoelectroencephalography (SEEG) offer a reliable approach to localizing the EZ, especially in MRI-negative cases. Methods: This retrospective study analyzed the data of 22 patients with pharmacoresistant epilepsy who underwent frameless stereotactic SEEG electrode implantation with automated CT-based registration between September 2016 and November 2024. For measuring accuracy, Euclidean distance, radial deviation, angular deviation, and depth deviation were calculated for each electrode. Results: A total of 153 depth electrodes were implanted, targeting various cortical regions. The median Euclidean distance at the entry point was 1.54 mm (IQR 1.31), with a radial deviation of 1.33 mm (IQR 1.32). At the target level, the median Euclidean distance was 2.61 mm (IQR 1.53), with a radial deviation of 1.67 mm (IQR 1.54) and depth deviation of 0.95 mm (IQR 2.43). Accuracy was not significantly affected by electrode order, anatomical location, skull thickness, or intracranial length. Conclusions: These findings demonstrate that frameless stereotactic SEEG electrode implantation is safe and feasible for identifying the EZ. The integration of automatic intraoperative CT-based registration ensures precision. While maintaining workflow efficiency, it achieves accuracy comparable to frame-based methods. Further studies with larger cohorts are warranted to validate these results and assess their impact on surgical outcomes.
Collapse
Affiliation(s)
- Alexander Grote
- Department of Neurosurgery, University Hospital Marburg, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany (B.C.); (C.N.)
| | - Marko Gjorgjevski
- Department of Neurosurgery, University Hospital Marburg, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany (B.C.); (C.N.)
| | - Barbara Carl
- Department of Neurosurgery, University Hospital Marburg, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany (B.C.); (C.N.)
- Department of Neurosurgery, Helios Dr. Horst Schmidt Kliniken, Ludwig-Erhard-Straße 100, 65199 Wiesbaden, Germany
| | - Daniel Delev
- Department of Neurosurgery, Friedrich-Alexander University of Erlangen, Maximilianplatz 2, 91054 Erlangen, Germany;
| | - Susanne Knake
- Epilepsy Center Hesse, Department for Neurology, University Hospital Marburg, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany; (S.K.); (K.M.)
- Center for Mind, Brain and Behavior (CMBB), 35043 Marburg, Germany
- LOEWE-Research-Cluster for Advanced Medical Physics in Imaging and Therapy (ADMIT), Technische Hochschule Mittelhessen (THM), University of Applied Sciences, 35390 Giessen, Germany
| | - Katja Menzler
- Epilepsy Center Hesse, Department for Neurology, University Hospital Marburg, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany; (S.K.); (K.M.)
- Center for Mind, Brain and Behavior (CMBB), 35043 Marburg, Germany
| | - Christopher Nimsky
- Department of Neurosurgery, University Hospital Marburg, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany (B.C.); (C.N.)
- Center for Mind, Brain and Behavior (CMBB), 35043 Marburg, Germany
| | - Miriam H. A. Bopp
- Department of Neurosurgery, University Hospital Marburg, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany (B.C.); (C.N.)
- Center for Mind, Brain and Behavior (CMBB), 35043 Marburg, Germany
| |
Collapse
|
2
|
He Z, Xu G, Zhang G, Wang Z, Sun J, Li W, Liu D, Tian Y, Huang W, Cai D. Computed tomography and structured light imaging guided orthopedic navigation puncture system: effective reduction of intraoperative image drift and mismatch. Front Surg 2024; 11:1476245. [PMID: 39450295 PMCID: PMC11499228 DOI: 10.3389/fsurg.2024.1476245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Background Image-guided surgical navigation systems are widely regarded as the benchmark for computer-assisted surgical robotic platforms, yet a persistent challenge remains in addressing intraoperative image drift and mismatch. It can significantly impact the accuracy and precision of surgical procedures. Therefore, further research and development are necessary to mitigate this issue and enhance the overall performance of these advanced surgical platforms. Objective The primary objective is to improve the precision of image guided puncture navigation systems by developing a computed tomography (CT) and structured light imaging (SLI) based navigation system. Furthermore, we also aim to quantifying and visualize intraoperative image drift and mismatch in real time and provide feedback to surgeons, ensuring that surgical procedures are executed with accuracy and reliability. Methods A CT-SLI guided orthopedic navigation puncture system was developed. Polymer bandages are employed to pressurize, plasticize, immobilize and toughen the surface of a specimen for surgical operations. Preoperative CT images of the specimen are acquired, a 3D navigation map is reconstructed and a puncture path planned accordingly. During surgery, an SLI module captures and reconstructs the 3D surfaces of both the specimen and a guiding tube for the puncture needle. The SLI reconstructed 3D surface of the specimen is matched to the CT navigation map via two-step point cloud registrations, while the SLI reconstructed 3D surface of the guiding tube is fitted by a cylindrical model, which is in turn aligned with the planned puncture path. The proposed system has been tested and evaluated using 20 formalin-soaked lower limb cadaver specimens preserved at a local hospital. Results The proposed method achieved image registration RMS errors of 0.576 ± 0.146 mm and 0.407 ± 0.234 mm between preoperative CT and intraoperative SLI surface models and between preoperative and postoperative CT surface models. In addition, preoperative and postoperative specimen surface and skeletal drifts were 0.033 ± 0.272 mm and 0.235 ± 0.197 mm respectively. Conclusion The results indicate that the proposed method is effective in reducing intraoperative image drift and mismatch. The system also visualizes intraoperative image drift and mismatch, and provides real time visual feedback to surgeons.
Collapse
Affiliation(s)
- Zaopeng He
- The Third Affiliated Hospital and Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Lecong Hospital of Shunde, Foshan, China
| | - Guanghua Xu
- Lecong Hospital of Shunde, Foshan, China
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy and School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Guodong Zhang
- Department of Orthopedics, Affiliated Hospital of Putian University, Putian, China
| | - Zeyu Wang
- School of Basic Medical Sciences, Yanbian University, Yanbian, China
| | | | - Wei Li
- Lecong Hospital of Shunde, Foshan, China
| | - Dongbo Liu
- Lecong Hospital of Shunde, Foshan, China
| | - Yibin Tian
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, China
| | - Wenhua Huang
- The Third Affiliated Hospital and Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy and School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Daozhang Cai
- The Third Affiliated Hospital and Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Orthopedic Hospital of Guangdong Province, Academy of Orthopedics Guangdong Province, Guangzhou, China
| |
Collapse
|
3
|
Grote A, Neumann F, Menzler K, Carl B, Nimsky C, Bopp MHA. Augmented Reality in Extratemporal Lobe Epilepsy Surgery. J Clin Med 2024; 13:5692. [PMID: 39407752 PMCID: PMC11477171 DOI: 10.3390/jcm13195692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Epilepsy surgery for extratemporal lobe epilepsy (ETLE) is challenging, particularly when MRI findings are non-lesional and seizure patterns are complex. Invasive diagnostic techniques are crucial for accurately identifying the epileptogenic zone and its relationship with surrounding functional tissue. Microscope-based augmented reality (AR) support, combined with navigation, may enhance intraoperative orientation, particularly in cases involving subtle or indistinct lesions, thereby improving patient outcomes and safety (e.g., seizure freedom and preservation of neuronal integrity). Therefore, this study was conducted to prove the clinical advantages of microscope-based AR support in ETLE surgery. Methods: We retrospectively analyzed data from ten patients with pharmacoresistant ETLE who underwent invasive diagnostics with depth and/or subdural grid electrodes, followed by resective surgery. AR support was provided via the head-up displays of the operative microscope, with navigation based on automatic intraoperative computed tomography (iCT)-based registration. The surgical plan included the suspected epileptogenic lesion, electrode positions, and relevant surrounding functional structures, all of which were visualized intraoperatively. Results: Six patients reported complete seizure freedom following surgery (ILAE 1), one patient was seizure-free at the 2-year follow-up, and one patient experienced only auras (ILAE 2). Two patients developed transient neurological deficits that resolved shortly after surgery. Conclusions: Microscope-based AR support enhanced intraoperative orientation in all cases, contributing to improved patient outcomes and safety. It was highly valued by experienced surgeons and as a training tool for less experienced practitioners.
Collapse
Affiliation(s)
- Alexander Grote
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany; (F.N.); (B.C.); (C.N.)
| | - Franziska Neumann
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany; (F.N.); (B.C.); (C.N.)
| | - Katja Menzler
- Department of Neurology, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany;
| | - Barbara Carl
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany; (F.N.); (B.C.); (C.N.)
- Department of Neurosurgery, Helios Dr. Horst Schmidt Kliniken, Ludwig-Erhard-Straße 100, 65199 Wiesbaden, Germany
| | - Christopher Nimsky
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany; (F.N.); (B.C.); (C.N.)
- Center for Mind, Brain and Behavior (CMBB), 35043 Marburg, Germany
| | - Miriam H. A. Bopp
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany; (F.N.); (B.C.); (C.N.)
- Center for Mind, Brain and Behavior (CMBB), 35043 Marburg, Germany
| |
Collapse
|
4
|
Kim TH, Kim YC, Jeong WS, Choi JW. Enhancing Surgical Approach: Breakthrough Markerless Surface Registration With Augmented Reality for Zygomatic Complex Fracture Surgeries. Ann Plast Surg 2024; 93:70-73. [PMID: 38785375 DOI: 10.1097/sap.0000000000003923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
BACKGROUND Innovative technologies with surgical navigation have been used for enhancing surgical accuracies for zygomaticomaxillary complex (ZMC) fractures and offers advantages in precision, accuracy, effectiveness, predictability, and symmetry improvement. Moreover, augmented reality (AR) navigation technology combines virtual reality, 3-dimensional (3D) reconstruction, and real-time interaction, making it ideal for bone tissue operations. Our study explored the usefulness and clinical efficacy of AR technology in intraoperative guidance for reducing ZMC fractures. METHODS We retrospectively studied 35 patients with zygomatic complex fractures, comparing outcomes of AR-guided and conventional methods. Furthermore, the AR system provided real-time visualization and guidance. The evaluation included reduction accuracy using root mean square (RMS) value and symmetry analysis using a mirror image of 3D models. Results demonstrated the feasibility and effectiveness of the AR-guided method in improving outcomes and patient satisfaction. RESULTS In 35 patients (25 males, 10 females), AR-guided (n = 19) and conventional (n = 16) approaches were compared. Age, sex, and fracture type exhibited no significant differences between groups. No complications occurred, and postoperative RMS error significantly decreased ( P < 0.001). The AR group had a lower postoperative RMS error ( P = 0.034). CONCLUSIONS Augmented reality-guided surgery improved accuracy and outcomes in zygomatic complex fractures. Real-time visualization enhanced precision during reduction and fixation. This innovative approach promises enhanced surgical accuracy and patient outcomes in craniofacial surgery.
Collapse
Affiliation(s)
- Tae Hyung Kim
- From the Department of Plastic and Reconstructive Surgery, Seoul Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | | | | | | |
Collapse
|
5
|
Qi Z, Jin H, Xu X, Wang Q, Gan Z, Xiong R, Zhang S, Liu M, Wang J, Ding X, Chen X, Zhang J, Nimsky C, Bopp MHA. Head model dataset for mixed reality navigation in neurosurgical interventions for intracranial lesions. Sci Data 2024; 11:538. [PMID: 38796526 PMCID: PMC11127921 DOI: 10.1038/s41597-024-03385-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/15/2024] [Indexed: 05/28/2024] Open
Abstract
Mixed reality navigation (MRN) technology is emerging as an increasingly significant and interesting topic in neurosurgery. MRN enables neurosurgeons to "see through" the head with an interactive, hybrid visualization environment that merges virtual- and physical-world elements. Offering immersive, intuitive, and reliable guidance for preoperative and intraoperative intervention of intracranial lesions, MRN showcases its potential as an economically efficient and user-friendly alternative to standard neuronavigation systems. However, the clinical research and development of MRN systems present challenges: recruiting a sufficient number of patients within a limited timeframe is difficult, and acquiring low-cost, commercially available, medically significant head phantoms is equally challenging. To accelerate the development of novel MRN systems and surmount these obstacles, the study presents a dataset designed for MRN system development and testing in neurosurgery. It includes CT and MRI data from 19 patients with intracranial lesions and derived 3D models of anatomical structures and validation references. The models are available in Wavefront object (OBJ) and Stereolithography (STL) formats, supporting the creation and assessment of neurosurgical MRN applications.
Collapse
Affiliation(s)
- Ziyu Qi
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043, Marburg, Germany.
- Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, 100853, Beijing, China.
| | - Haitao Jin
- Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, 100853, Beijing, China
- Medical School of Chinese PLA General Hospital, 100853, Beijing, China
- NCO School, Army Medical University, 050081, Shijiazhuang, China
| | - Xinghua Xu
- Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, 100853, Beijing, China
| | - Qun Wang
- Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, 100853, Beijing, China
| | - Zhichao Gan
- Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, 100853, Beijing, China
- Medical School of Chinese PLA General Hospital, 100853, Beijing, China
| | - Ruochu Xiong
- Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, 100853, Beijing, China
- Department of Neurosurgery, Division of Medicine, Graduate School of Medical Sciences, Kanazawa University, Takara-machi 13-1, 920-8641, Kanazawa, Ishikawa, Japan
| | - Shiyu Zhang
- Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, 100853, Beijing, China
- Medical School of Chinese PLA General Hospital, 100853, Beijing, China
| | - Minghang Liu
- Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, 100853, Beijing, China
- Medical School of Chinese PLA General Hospital, 100853, Beijing, China
| | - Jingyue Wang
- Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, 100853, Beijing, China
- Medical School of Chinese PLA General Hospital, 100853, Beijing, China
| | - Xinyu Ding
- Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, 100853, Beijing, China
- Medical School of Chinese PLA General Hospital, 100853, Beijing, China
| | - Xiaolei Chen
- Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, 100853, Beijing, China
| | - Jiashu Zhang
- Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, 100853, Beijing, China.
| | - Christopher Nimsky
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), 35043, Marburg, Germany
| | - Miriam H A Bopp
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043, Marburg, Germany.
- Center for Mind, Brain and Behavior (CMBB), 35043, Marburg, Germany.
| |
Collapse
|
6
|
Bopp MHA, Grote A, Gjorgjevski M, Pojskic M, Saß B, Nimsky C. Enabling Navigation and Augmented Reality in the Sitting Position in Posterior Fossa Surgery Using Intraoperative Ultrasound. Cancers (Basel) 2024; 16:1985. [PMID: 38893106 PMCID: PMC11171013 DOI: 10.3390/cancers16111985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/09/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Despite its broad use in cranial and spinal surgery, navigation support and microscope-based augmented reality (AR) have not yet found their way into posterior fossa surgery in the sitting position. While this position offers surgical benefits, navigation accuracy and thereof the use of navigation itself seems limited. Intraoperative ultrasound (iUS) can be applied at any time during surgery, delivering real-time images that can be used for accuracy verification and navigation updates. Within this study, its applicability in the sitting position was assessed. Data from 15 patients with lesions within the posterior fossa who underwent magnetic resonance imaging (MRI)-based navigation-supported surgery in the sitting position were retrospectively analyzed using the standard reference array and new rigid image-based MRI-iUS co-registration. The navigation accuracy was evaluated based on the spatial overlap of the outlined lesions and the distance between the corresponding landmarks in both data sets, respectively. Image-based co-registration significantly improved (p < 0.001) the spatial overlap of the outlined lesion (0.42 ± 0.30 vs. 0.65 ± 0.23) and significantly reduced (p < 0.001) the distance between the corresponding landmarks (8.69 ± 6.23 mm vs. 3.19 ± 2.73 mm), allowing for the sufficient use of navigation and AR support. Navigated iUS can therefore serve as an easy-to-use tool to enable navigation support for posterior fossa surgery in the sitting position.
Collapse
Affiliation(s)
- Miriam H. A. Bopp
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany; (A.G.); (M.G.); (M.P.); (B.S.); (C.N.)
- Center for Mind, Brain and Behavior (CMBB), 35043 Marburg, Germany
| | - Alexander Grote
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany; (A.G.); (M.G.); (M.P.); (B.S.); (C.N.)
| | - Marko Gjorgjevski
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany; (A.G.); (M.G.); (M.P.); (B.S.); (C.N.)
| | - Mirza Pojskic
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany; (A.G.); (M.G.); (M.P.); (B.S.); (C.N.)
| | - Benjamin Saß
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany; (A.G.); (M.G.); (M.P.); (B.S.); (C.N.)
| | - Christopher Nimsky
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany; (A.G.); (M.G.); (M.P.); (B.S.); (C.N.)
- Center for Mind, Brain and Behavior (CMBB), 35043 Marburg, Germany
| |
Collapse
|
7
|
Qi Z, Jin H, Wang Q, Gan Z, Xiong R, Zhang S, Liu M, Wang J, Ding X, Chen X, Zhang J, Nimsky C, Bopp MHA. The Feasibility and Accuracy of Holographic Navigation with Laser Crosshair Simulator Registration on a Mixed-Reality Display. SENSORS (BASEL, SWITZERLAND) 2024; 24:896. [PMID: 38339612 PMCID: PMC10857152 DOI: 10.3390/s24030896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
Addressing conventional neurosurgical navigation systems' high costs and complexity, this study explores the feasibility and accuracy of a simplified, cost-effective mixed reality navigation (MRN) system based on a laser crosshair simulator (LCS). A new automatic registration method was developed, featuring coplanar laser emitters and a recognizable target pattern. The workflow was integrated into Microsoft's HoloLens-2 for practical application. The study assessed the system's precision by utilizing life-sized 3D-printed head phantoms based on computed tomography (CT) or magnetic resonance imaging (MRI) data from 19 patients (female/male: 7/12, average age: 54.4 ± 18.5 years) with intracranial lesions. Six to seven CT/MRI-visible scalp markers were used as reference points per case. The LCS-MRN's accuracy was evaluated through landmark-based and lesion-based analyses, using metrics such as target registration error (TRE) and Dice similarity coefficient (DSC). The system demonstrated immersive capabilities for observing intracranial structures across all cases. Analysis of 124 landmarks showed a TRE of 3.0 ± 0.5 mm, consistent across various surgical positions. The DSC of 0.83 ± 0.12 correlated significantly with lesion volume (Spearman rho = 0.813, p < 0.001). Therefore, the LCS-MRN system is a viable tool for neurosurgical planning, highlighting its low user dependency, cost-efficiency, and accuracy, with prospects for future clinical application enhancements.
Collapse
Affiliation(s)
- Ziyu Qi
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany;
- Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; (H.J.); (Q.W.); (Z.G.); (S.Z.); (M.L.); (J.W.); (X.D.); (X.C.); (J.Z.)
| | - Haitao Jin
- Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; (H.J.); (Q.W.); (Z.G.); (S.Z.); (M.L.); (J.W.); (X.D.); (X.C.); (J.Z.)
- Medical School of Chinese PLA, Beijing 100853, China
- NCO School, Army Medical University, Shijiazhuang 050081, China
| | - Qun Wang
- Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; (H.J.); (Q.W.); (Z.G.); (S.Z.); (M.L.); (J.W.); (X.D.); (X.C.); (J.Z.)
| | - Zhichao Gan
- Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; (H.J.); (Q.W.); (Z.G.); (S.Z.); (M.L.); (J.W.); (X.D.); (X.C.); (J.Z.)
- Medical School of Chinese PLA, Beijing 100853, China
| | - Ruochu Xiong
- Department of Neurosurgery, Division of Medicine, Graduate School of Medical Sciences, Kanazawa University, Takara-machi 13-1, Kanazawa 920-8641, Japan;
| | - Shiyu Zhang
- Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; (H.J.); (Q.W.); (Z.G.); (S.Z.); (M.L.); (J.W.); (X.D.); (X.C.); (J.Z.)
- Medical School of Chinese PLA, Beijing 100853, China
| | - Minghang Liu
- Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; (H.J.); (Q.W.); (Z.G.); (S.Z.); (M.L.); (J.W.); (X.D.); (X.C.); (J.Z.)
- Medical School of Chinese PLA, Beijing 100853, China
| | - Jingyue Wang
- Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; (H.J.); (Q.W.); (Z.G.); (S.Z.); (M.L.); (J.W.); (X.D.); (X.C.); (J.Z.)
- Medical School of Chinese PLA, Beijing 100853, China
| | - Xinyu Ding
- Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; (H.J.); (Q.W.); (Z.G.); (S.Z.); (M.L.); (J.W.); (X.D.); (X.C.); (J.Z.)
- Medical School of Chinese PLA, Beijing 100853, China
| | - Xiaolei Chen
- Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; (H.J.); (Q.W.); (Z.G.); (S.Z.); (M.L.); (J.W.); (X.D.); (X.C.); (J.Z.)
| | - Jiashu Zhang
- Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; (H.J.); (Q.W.); (Z.G.); (S.Z.); (M.L.); (J.W.); (X.D.); (X.C.); (J.Z.)
| | - Christopher Nimsky
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany;
- Center for Mind, Brain and Behavior (CMBB), 35043 Marburg, Germany
| | - Miriam H. A. Bopp
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany;
- Center for Mind, Brain and Behavior (CMBB), 35043 Marburg, Germany
| |
Collapse
|
8
|
Qi Z, Bopp MHA, Nimsky C, Chen X, Xu X, Wang Q, Gan Z, Zhang S, Wang J, Jin H, Zhang J. A Novel Registration Method for a Mixed Reality Navigation System Based on a Laser Crosshair Simulator: A Technical Note. Bioengineering (Basel) 2023; 10:1290. [PMID: 38002414 PMCID: PMC10669875 DOI: 10.3390/bioengineering10111290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
Mixed Reality Navigation (MRN) is pivotal in augmented reality-assisted intelligent neurosurgical interventions. However, existing MRN registration methods face challenges in concurrently achieving low user dependency, high accuracy, and clinical applicability. This study proposes and evaluates a novel registration method based on a laser crosshair simulator, evaluating its feasibility and accuracy. A novel registration method employing a laser crosshair simulator was introduced, designed to replicate the scanner frame's position on the patient. The system autonomously calculates the transformation, mapping coordinates from the tracking space to the reference image space. A mathematical model and workflow for registration were designed, and a Universal Windows Platform (UWP) application was developed on HoloLens-2. Finally, a head phantom was used to measure the system's target registration error (TRE). The proposed method was successfully implemented, obviating the need for user interactions with virtual objects during the registration process. Regarding accuracy, the average deviation was 3.7 ± 1.7 mm. This method shows encouraging results in efficiency and intuitiveness and marks a valuable advancement in low-cost, easy-to-use MRN systems. The potential for enhancing accuracy and adaptability in intervention procedures positions this approach as promising for improving surgical outcomes.
Collapse
Affiliation(s)
- Ziyu Qi
- Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; (X.C.); (X.X.); (Q.W.); (Z.G.); (S.Z.); (J.W.); (H.J.)
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany;
| | - Miriam H. A. Bopp
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany;
- Center for Mind, Brain and Behavior (CMBB), 35043 Marburg, Germany
| | - Christopher Nimsky
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany;
- Center for Mind, Brain and Behavior (CMBB), 35043 Marburg, Germany
| | - Xiaolei Chen
- Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; (X.C.); (X.X.); (Q.W.); (Z.G.); (S.Z.); (J.W.); (H.J.)
| | - Xinghua Xu
- Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; (X.C.); (X.X.); (Q.W.); (Z.G.); (S.Z.); (J.W.); (H.J.)
| | - Qun Wang
- Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; (X.C.); (X.X.); (Q.W.); (Z.G.); (S.Z.); (J.W.); (H.J.)
| | - Zhichao Gan
- Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; (X.C.); (X.X.); (Q.W.); (Z.G.); (S.Z.); (J.W.); (H.J.)
- Medical School of Chinese PLA, Beijing 100853, China
| | - Shiyu Zhang
- Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; (X.C.); (X.X.); (Q.W.); (Z.G.); (S.Z.); (J.W.); (H.J.)
- Medical School of Chinese PLA, Beijing 100853, China
| | - Jingyue Wang
- Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; (X.C.); (X.X.); (Q.W.); (Z.G.); (S.Z.); (J.W.); (H.J.)
- Medical School of Chinese PLA, Beijing 100853, China
| | - Haitao Jin
- Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; (X.C.); (X.X.); (Q.W.); (Z.G.); (S.Z.); (J.W.); (H.J.)
- Medical School of Chinese PLA, Beijing 100853, China
- NCO School, Army Medical University, Shijiazhuang 050081, China
| | - Jiashu Zhang
- Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; (X.C.); (X.X.); (Q.W.); (Z.G.); (S.Z.); (J.W.); (H.J.)
| |
Collapse
|