1
|
J J, Haw SC, Palanichamy N, Ng KW, Thillaigovindhan SK. IM- LTS: An Integrated Model for Lung Tumor Segmentation using Neural Networks and IoMT. MethodsX 2025; 14:103201. [PMID: 40026592 PMCID: PMC11869539 DOI: 10.1016/j.mex.2025.103201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 02/03/2025] [Indexed: 03/05/2025] Open
Abstract
In recent days, Internet of Medical Things (IoMT) and Deep Learning (DL) techniques are broadly used in medical data processing in decision-making. A lung tumour, one of the most dangerous medical diseases, requires early diagnosis with a higher precision rate. With that concern, this work aims to develop an Integrated Model (IM- LTS) for Lung Tumor Segmentation using Neural Networks (NN) and the Internet of Medical Things (IoMT). The model integrates two architectures, MobileNetV2 and U-NET, for classifying the input lung data. The input CT lung images are pre-processed using Z-score Normalization. The semantic features of lung images are extracted based on texture, intensity, and shape to provide information to the training network.•In this work, the transfer learning technique is incorporated, and the pre-trained NN was used as an encoder for the U-NET model for segmentation. Furthermore, Support Vector Machine is used here to classify input lung data as benign and malignant.•The results are measured based on the metrics such as, specificity, sensitivity, precision, accuracy and F-Score, using the data from benchmark datasets. Compared to the existing lung tumor segmentation and classification models, the proposed model provides better results and evidence for earlier disease diagnosis.
Collapse
Affiliation(s)
- Jayapradha J
- Department of Computing Technologies, School of Computing, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
- Faculty of Computing and Informatics, Multimedia University, Jalan Multimedia, 63100 Cyberjaya, Malaysia
| | - Su-Cheng Haw
- Faculty of Computing and Informatics, Multimedia University, Jalan Multimedia, 63100 Cyberjaya, Malaysia
| | - Naveen Palanichamy
- Faculty of Computing and Informatics, Multimedia University, Jalan Multimedia, 63100 Cyberjaya, Malaysia
| | - Kok-Why Ng
- Faculty of Computing and Informatics, Multimedia University, Jalan Multimedia, 63100 Cyberjaya, Malaysia
| | - Senthil Kumar Thillaigovindhan
- Department of Computing Technologies, School of Computing, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| |
Collapse
|
2
|
Yang G, Luo S, Greer P. Boosting Skin Cancer Classification: A Multi-Scale Attention and Ensemble Approach with Vision Transformers. SENSORS (BASEL, SWITZERLAND) 2025; 25:2479. [PMID: 40285168 PMCID: PMC12030980 DOI: 10.3390/s25082479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/10/2025] [Accepted: 04/12/2025] [Indexed: 04/29/2025]
Abstract
Skin cancer is a significant global health concern, with melanoma being the most dangerous form, responsible for the majority of skin cancer-related deaths. Early detection of skin cancer is critical, as it can drastically improve survival rates. While deep learning models have achieved impressive results in skin cancer classification, there remain challenges in accurately distinguishing between benign and malignant lesions. In this study, we introduce a novel multi-scale attention-based performance booster inspired by the Vision Transformer (ViT) architecture, which enhances the accuracy of both ViT and convolutional neural network (CNN) models. By leveraging attention maps to identify discriminative regions within skin lesion images, our method improves the models' focus on diagnostically relevant areas. Additionally, we employ ensemble learning techniques to combine the outputs of several deep learning models using majority voting. Our skin cancer classifier, consisting of ViT and EfficientNet models, achieved a classification accuracy of 95.05% on the ISIC2018 dataset, outperforming individual models. The results demonstrate the effectiveness of integrating attention-based multi-scale learning and ensemble methods in skin cancer classification.
Collapse
Affiliation(s)
- Guang Yang
- School of Information and Physical Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Suhuai Luo
- School of Information and Physical Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan NSW 2308, Australia
| | - Peter Greer
- School of Information and Physical Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan NSW 2308, Australia
| |
Collapse
|
3
|
Richa, Patro BDK. Improved early detection accuracy for breast cancer using a deep learning framework in medical imaging. Comput Biol Med 2025; 187:109751. [PMID: 39884057 DOI: 10.1016/j.compbiomed.2025.109751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/28/2024] [Accepted: 01/23/2025] [Indexed: 02/01/2025]
Abstract
PROBLEM The most prevalent cancer in women is breast cancer (BC), and effective treatment depends on being detected early. Many people seek medical imaging techniques to help in the early detection of problems, but results often need to be corrected for increased accuracy. AIM A new deep learning approach for medical images is applied in the detection of BC in this paper. Early detection is carried out through the proposed method using a combination of Convolutional Neural Network (CNNs) with feature selection and fusion methods. METHODS The proposed method may decrease the mortality rate due to the early-stage detection of BC with high precision. In this work, the proposed Deep Learning Framework (DLF) uses many levels of artificial neural networks to sort images of BC into categories correctly. RESULTS This proposed method further increases the scalability of convolutional recurrent networks. It also achieved 94.93 % accuracy, 93.66 % precision, 89.21 % recall and 98.86 % F1-score. Through this approach, cancer tumors in a specific location can be detected more accurately. CONCLUSION The existing methods are dependent mainly on manually selecting and extracting features. The proposed framework automatically learns and finds relevant features from images that result in outperforming existing methods.
Collapse
Affiliation(s)
- Richa
- Department of Computer Science and Engineering, Rajkiya Engineering College, Kannauj, India; Affiliated with Abdul Kalam Technical University(AKTU), Jankipuram Vistar, Lucknow, Uttar Pradesh, 226031, India.
| | - Bachu Dushmanta Kumar Patro
- Department of Computer Science and Engineering, Rajkiya Engineering College, Kannauj, India; Affiliated with Abdul Kalam Technical University(AKTU), Jankipuram Vistar, Lucknow, Uttar Pradesh, 226031, India.
| |
Collapse
|
4
|
Gupta C, Gill NS, Gulia P, Alduaiji N, Shreyas J, Shukla PK. Applying YOLOv6 as an ensemble federated learning framework to classify breast cancer pathology images. Sci Rep 2025; 15:3769. [PMID: 39885198 PMCID: PMC11782635 DOI: 10.1038/s41598-024-80187-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 11/15/2024] [Indexed: 02/01/2025] Open
Abstract
The most common carcinoma-related cause of death among women is breast cancer. Early detection is crucial, and the manual screening method may lead to a delayed diagnosis, which would delay treatment and put lives at risk. Mammography imaging is advised for routine screening to diagnose breast cancer at an early stage. To improve generalizability, this study examines the implementation of Federated Learning (FedL) to detect breast cancer. Its performance is compared to a centralized training technique that diagnoses breast cancer. Although FedL has been famous as a safeguarding privacy algorithm, its similarities to ensemble learning methods, such as federated averaging (FEDAvrg), still need to be thoroughly investigated. This study examines explicitly how a YOLOv6 model trained with FedL performs across several clients. A new homomorphic encryption and decryption algorithm is also proposed to retain data privacy. A novel pruned YOLOv6 model with FedL is introduced in this study to differentiate benign and malignant tissues. The model is trained on the breast cancer pathological dataset BreakHis and BUSI. The proposed model achieved a validation accuracy of 98% on BreakHis dataset and 97% on BUSI dataset. The results are compared with the VGG-19, ResNet-50, and InceptionV3 algorithms, showing that the proposed model achieved better results. The tests reveal that federated learning is feasible, as FedAvrg trains models of outstanding quality with only a few communication rounds, as shown by the results on a range of model topologies such as ResNet50, VGG-19, InceptionV3, and the proposed Ensembled FedL YOLOv6.
Collapse
Affiliation(s)
- Chhaya Gupta
- Department of Computer Science and Applications, Maharshi Dayanand University, Rohtak, India
| | - Nasib Singh Gill
- Department of Computer Science and Applications, Maharshi Dayanand University, Rohtak, India
| | - Preeti Gulia
- Department of Computer Science and Applications, Maharshi Dayanand University, Rohtak, India
| | - Noha Alduaiji
- Department of Computer Science, College of Computer and Information Sciences, Majmaah University, 11952, Al Majmaah, Saudi Arabia
| | - J Shreyas
- Department of Information Technology, Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| | - Piyush Kumar Shukla
- Department of Computer Science and Engineering, University Institute of Technology, Rajiv Gandhi Proudyogiki Vishwavidyalaya (State Technological University of Madhya Pradesh), Madhya Pradesh, Bhopal, 462033, India
| |
Collapse
|
5
|
P MD, A M, Ali Y, V S. Effective BCDNet-based breast cancer classification model using hybrid deep learning with VGG16-based optimal feature extraction. BMC Med Imaging 2025; 25:12. [PMID: 39780045 PMCID: PMC11707918 DOI: 10.1186/s12880-024-01538-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
PROBLEM Breast cancer is a leading cause of death among women, and early detection is crucial for improving survival rates. The manual breast cancer diagnosis utilizes more time and is subjective. Also, the previous CAD models mostly depend on manmade visual details that are complex to generalize across ultrasound images utilizing distinct techniques. Distinct imaging tools have been utilized in previous works such as mammography and MRI. However, these imaging tools are costly and less portable than ultrasound imaging. Also, ultrasound imaging is a non-invasive method commonly used for breast cancer screening. Hence, the paper presents a novel deep learning model, BCDNet, for classifying breast tumors as benign or malignant using ultrasound images. AIM The primary aim of the study is to design an effective breast cancer diagnosis model that can accurately classify tumors in their early stages, thus reducing mortality rates. The model aims to optimize the weight and parameters using the RPAOSM-ESO algorithm to enhance accuracy and minimize false negative rates. METHODS The BCDNet model utilizes transfer learning from a pre-trained VGG16 network for feature extraction and employs an AHDNAM classification approach, which includes ASPP, DTCN, 1DCNN, and an attention mechanism. The RPAOSM-ESO algorithm is used to fine-tune the weights and parameters. RESULTS The RPAOSM-ESO-BCDNet-based breast cancer diagnosis model provided 94.5 accuracy rates. This value is relatively higher than the previous models such as DTCN (88.2), 1DCNN (89.6), MobileNet (91.3), and ASPP-DTC-1DCNN-AM (93.8). Hence, it is guaranteed that the designed RPAOSM-ESO-BCDNet produces relatively accurate solutions for the classification than the previous models. CONCLUSION The BCDNet model, with its sophisticated feature extraction and classification techniques optimized by the RPAOSM-ESO algorithm, shows promise in accurately classifying breast tumors using ultrasound images. The study suggests that the model could be a valuable tool in the early detection of breast cancer, potentially saving lives and reducing the burden on healthcare systems.
Collapse
Affiliation(s)
- Meenakshi Devi P
- Department of Information Technology, K.S.R. College of Engineering, Tiruchengode, Tamilnadu, 637215, India
| | - Muna A
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
| | - Yasser Ali
- Chitkara Centre for Research and Development, Chitkara University, Baddi, Himachal Pradesh, 174103, India
| | - Sumanth V
- Department of Information Technology, Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
6
|
Iniyan S, Raja MS, Poonguzhali R, Vikram A, Ramesh JVN, Mohanty SN, Dudekula KV. Enhanced breast cancer diagnosis through integration of computer vision with fusion based joint transfer learning using multi modality medical images. Sci Rep 2024; 14:28376. [PMID: 39551870 PMCID: PMC11570594 DOI: 10.1038/s41598-024-79363-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/08/2024] [Indexed: 11/19/2024] Open
Abstract
Breast cancer (BC) is a type of cancer which progresses and spreads from breast tissues and gradually exceeds the entire body; this kind of cancer originates in both sexes. Prompt recognition of this disorder is most significant in this phase, and it is measured by providing patients with the essential treatment so their efficient lifetime can be protected. Scientists and researchers in numerous studies have initiated techniques to identify tumours in early phases. Still, misperception in classifying skeptical lesions can be due to poor image excellence and dissimilar breast density. BC is a primary health concern, requiring constant initial detection and improvement in analysis. BC analysis has made major progress recently with combining multi-modal image modalities. These studies deliver an overview of the segmentation, classification, or grading of numerous cancer types, including BC, by employing conventional machine learning (ML) models over hand-engineered features. Therefore, this study uses multi-modality medical imaging to propose a Computer Vision with Fusion Joint Transfer Learning for Breast Cancer Diagnosis (CVFBJTL-BCD) technique. The presented CVFBJTL-BCD technique utilizes feature fusion and DL models to effectively detect and identify BC diagnoses. The CVFBJTL-BCD technique primarily employs the Gabor filtering (GF) technique for noise removal. Next, the CVFBJTL-BCD technique uses a fusion-based joint transfer learning (TL) process comprising three models, namely DenseNet201, InceptionV3, and MobileNetV2. The stacked autoencoders (SAE) model is implemented to classify BC diagnosis. Finally, the horse herd optimization algorithm (HHOA) model is utilized to select parameters involved in the SAE method optimally. To demonstrate the improved results of the CVFBJTL-BCD methodology, a comprehensive series of experimentations are performed on two benchmark datasets. The comparative analysis of the CVFBJTL-BCD technique portrayed a superior accuracy value of 98.18% and 99.15% over existing methods under Histopathological and Ultrasound datasets.
Collapse
Affiliation(s)
- S Iniyan
- Department of Computing Technologies, School of Computing, SRM Institute of Science and Technology, Kaatankulathur, Chennai, 603203, India
| | - M Senthil Raja
- Department of Computing Technologies, School of Computing, SRM Institute of Science and Technology, Kaatankulathur, Chennai, 603203, India
| | - R Poonguzhali
- Department of Computer Science and Engineering, Periyar Maniammai Institute of Science & Technology, Vallam, Thanjavur, 613403, India
| | - A Vikram
- Department of Computer Science and Engineering, Aditya University, Surampalem, 533437, Andhra Pradesh, India
| | - Janjhyam Venkata Naga Ramesh
- Department of Computer Science and Engineering, Graphic Era Hill University, Dehradun, India
- Department of Computer Science and Engineering, Graphic Era University, Dehradun, Uttarakhand, India
| | - Sachi Nandan Mohanty
- School of Computer Science and Engineering (SCOPE), VIT-AP University, Amravati, Andhra Pradesh, India
| | - Khasim Vali Dudekula
- School of Computer Science and Engineering (SCOPE), VIT-AP University, Amravati, Andhra Pradesh, India.
| |
Collapse
|
7
|
Li J, Wang X, Min S, Xia J, Li J. Raman spectroscopy combined with convolutional neural network for the sub-types classification of breast cancer and critical feature visualization. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 255:108361. [PMID: 39116820 DOI: 10.1016/j.cmpb.2024.108361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/14/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
PROBLEMS Raman spectroscopy has emerged as an effective technique that can be used for noninvasive breast cancer analysis. However, the current Raman prediction models fail to cover all the molecular sub-types of breast cancer, and lack the visualization of the model. AIMS Using Raman spectroscopy combined with convolutional neural network (CNN) to construct a prediction model for the existing known molecular sub-types of breast cancer, and selected critical peaks through visualization strategies, so as to achieve the purpose of mining specific biomarker information. METHODS Optimizing network parameters with the help of sparrow search algorithm (SSA) for the multiple parameters in the CNN to improve the prediction performance of the model. To avoid the contingency of the results, multiple sets of data were generated through Monte Carlo sampling and used to train the model, thereby improving the credibility of the results. Based on the accurate prediction of the model, the spectral regions that contributed to the classification were visualized using Gradient-weighted Class Activation Mapping (Grad-CAM), achieving the goal of visualizing characteristic peaks. RESULTS Compared with other algorithms, optimized CNN could obtain the highest accuracy and lowest standard error. And there was no significant difference between using full spectra and fingerprint regions (within 2 %), indicating that the fingerprint region provided the most contribution in classifying sub-types. Based on the classification results from the fingerprint region, the model performances about various sub-types were as follows: CNN (95.34 %±2.18 %)>SVM(94.90 %±1.88 %)>PLS-DA(94.52 %±2.22 %)> KNN (80.00 %±5.27 %). The critical features visualized by Grad-CAM could match well with IHC information, allowing for a more distinct differentiation of sub-types in their spatial positions. CONCLUSION Raman spectroscopy combined with CNN could achieve accurate and rapid identification of breast cancer molecular sub-types. Proposed visualization strategy could be proved from biochemistry information and spatial location, demonstrated that the strategy might be used for the mining of biomarkers in future.
Collapse
Affiliation(s)
- Juan Li
- School of Pharmaceutical Sciences and Institute of Materia Medica & Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China
| | - Xiaoting Wang
- School of Pharmaceutical Sciences and Institute of Materia Medica & Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China
| | - Shungeng Min
- College of science, China agriculture university, Beijing, 100094, China
| | - Jingjing Xia
- School of Pharmaceutical Sciences and Institute of Materia Medica & Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China.
| | - Jinyao Li
- School of Pharmaceutical Sciences and Institute of Materia Medica & Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China
| |
Collapse
|
8
|
Wen X, Maimaiti M, Liu Q, Yu F, Gao H, Li G, Chen J. MnasNet-SimAM: An Improved Deep Learning Model for the Identification of Common Wheat Diseases in Complex Real-Field Environments. PLANTS (BASEL, SWITZERLAND) 2024; 13:2334. [PMID: 39204769 PMCID: PMC11360691 DOI: 10.3390/plants13162334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024]
Abstract
Deep learning approaches have been widely applied for agricultural disease detection. However, considerable challenges still exist, such as low recognition accuracy in complex backgrounds and high misjudgment rates for similar diseases. This study aimed to address these challenges through the detection of six prevalent wheat diseases and healthy wheat in images captured in a complex natural context, evaluating the recognition performance of five lightweight convolutional networks. A novel model, named MnasNet-SimAM, was developed by combining transfer learning and an attention mechanism. The results reveal that the five lightweight convolutional neural networks can recognize the six different wheat diseases with an accuracy of more than 90%. The MnasNet-SimAM model attained an accuracy of 95.14%, which is 1.7% better than that of the original model, while only increasing the model's parameter size by 0.01 MB. Additionally, the MnasNet-SimAM model reached an accuracy of 91.20% on the public Wheat Fungi Diseases data set, proving its excellent generalization capacity. These findings reveal that the proposed model can satisfy the requirements for rapid and accurate wheat disease detection.
Collapse
Affiliation(s)
- Xiaojie Wen
- Key Laboratory of the Pest Monitoring and Safety Control of Crops and Forests of the Xinjiang Uygur Autonomous Region, College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China; (X.W.); (M.M.); (F.Y.)
- Key Laboratory of Prevention and Control of Invasive Alien Species in Agriculture & Forestry of the North-Western Desert Oasis, Ministry of Agriculture and Rural Affairs, Urumqi 830052, China
| | - Muzaipaer Maimaiti
- Key Laboratory of the Pest Monitoring and Safety Control of Crops and Forests of the Xinjiang Uygur Autonomous Region, College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China; (X.W.); (M.M.); (F.Y.)
- Key Laboratory of Prevention and Control of Invasive Alien Species in Agriculture & Forestry of the North-Western Desert Oasis, Ministry of Agriculture and Rural Affairs, Urumqi 830052, China
| | - Qi Liu
- Key Laboratory of the Pest Monitoring and Safety Control of Crops and Forests of the Xinjiang Uygur Autonomous Region, College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China; (X.W.); (M.M.); (F.Y.)
- Key Laboratory of Prevention and Control of Invasive Alien Species in Agriculture & Forestry of the North-Western Desert Oasis, Ministry of Agriculture and Rural Affairs, Urumqi 830052, China
| | - Fusheng Yu
- Key Laboratory of the Pest Monitoring and Safety Control of Crops and Forests of the Xinjiang Uygur Autonomous Region, College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China; (X.W.); (M.M.); (F.Y.)
- Key Laboratory of Prevention and Control of Invasive Alien Species in Agriculture & Forestry of the North-Western Desert Oasis, Ministry of Agriculture and Rural Affairs, Urumqi 830052, China
| | - Haifeng Gao
- Institute of Plant Protection, Xinjiang Academy of Agricultural Science, Urumqi 830091, China; (H.G.); (G.L.)
- Key Laboratory of Integrated Pest Management on Crop in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Urumqi 830091, China
| | - Guangkuo Li
- Institute of Plant Protection, Xinjiang Academy of Agricultural Science, Urumqi 830091, China; (H.G.); (G.L.)
- Key Laboratory of Integrated Pest Management on Crop in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Urumqi 830091, China
| | - Jing Chen
- Key Laboratory of the Pest Monitoring and Safety Control of Crops and Forests of the Xinjiang Uygur Autonomous Region, College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China; (X.W.); (M.M.); (F.Y.)
- Key Laboratory of Prevention and Control of Invasive Alien Species in Agriculture & Forestry of the North-Western Desert Oasis, Ministry of Agriculture and Rural Affairs, Urumqi 830052, China
| |
Collapse
|
9
|
Yang SH, Huang CJ, Huang JS. Increasing Robustness of Intracortical Brain-Computer Interfaces for Recording Condition Changes via Data Augmentation. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 251:108208. [PMID: 38754326 DOI: 10.1016/j.cmpb.2024.108208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/30/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND AND OBJECTIVE Intracortical brain-computer interfaces (iBCIs) aim to help paralyzed individuals restore their motor functions by decoding neural activity into intended movement. However, changes in neural recording conditions hinder the decoding performance of iBCIs, mainly because the neural-to-kinematic mappings shift. Conventional approaches involve either training the neural decoders using large datasets before deploying the iBCI or conducting frequent calibrations during its operation. However, collecting data for extended periods can cause user fatigue, negatively impacting the quality and consistency of neural signals. Furthermore, frequent calibration imposes a substantial computational load. METHODS This study proposes a novel approach to increase iBCIs' robustness against changing recording conditions. The approach uses three neural augmentation operators to generate augmented neural activity that mimics common recording conditions. Then, contrastive learning is used to learn latent factors by maximizing the similarity between the augmented neural activities. The learned factors are expected to remain stable despite varying recording conditions and maintain a consistent correlation with the intended movement. RESULTS Experimental results demonstrate that the proposed iBCI outperformed the state-of-the-art iBCIs and was robust to changing recording conditions across days for long-term use on one publicly available nonhuman primate dataset. It achieved satisfactory offline decoding performance, even when a large training dataset was unavailable. CONCLUSIONS This study paves the way for reducing the need for frequent calibration of iBCIs and collecting a large amount of annotated training data. Potential future works aim to improve offline decoding performance with an ultra-small training dataset and improve the iBCIs' robustness to severely disabled electrodes.
Collapse
Affiliation(s)
- Shih-Hung Yang
- Department of Mechanical Engineering, National Cheng Kung University, Tainan, 701, Taiwan.
| | - Chun-Jui Huang
- Department of Mechanical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Jhih-Siang Huang
- Department of Mechanical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| |
Collapse
|
10
|
Allogmani AS, Mohamed RM, Al-Shibly NM, Ragab M. Enhanced cervical precancerous lesions detection and classification using Archimedes Optimization Algorithm with transfer learning. Sci Rep 2024; 14:12076. [PMID: 38802525 PMCID: PMC11130149 DOI: 10.1038/s41598-024-62773-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024] Open
Abstract
Cervical cancer (CC) ranks as the fourth most common form of cancer affecting women, manifesting in the cervix. CC is caused by the Human papillomavirus (HPV) infection and is eradicated by vaccinating women from an early age. However, limited medical facilities present a significant challenge in mid- or low-income countries. It can improve the survivability rate and be successfully treated if the CC is detected at earlier stages. Current technological improvements allow for cost-effective, more sensitive, and rapid screening and treatment measures for CC. DL techniques are widely adopted for the automated detection of CC. DL techniques and architectures are used to detect CC and provide higher detection performance. This study offers the design of Enhanced Cervical Precancerous Lesions Detection and Classification using the Archimedes Optimization Algorithm with Transfer Learning (CPLDC-AOATL) algorithm. The CPLDC-AOATL algorithm aims to diagnose cervical cancer using medical images. At the preliminary stage, the CPLDC-AOATL technique involves a bilateral filtering (BF) technique to eliminate the noise in the input images. Besides, the CPLDC-AOATL technique applies the Inception-ResNetv2 model for the feature extraction process, and the use of AOA chose the hyperparameters. The CPLDC-AOATL technique involves a bidirectional long short-term memory (BiLSTM) model for the cancer detection process. The experimental outcome of the CPLDC-AOATL technique emphasized the superior accuracy outcome of 99.53% over other existing approaches under a benchmark dataset.
Collapse
Affiliation(s)
- Ayed S Allogmani
- University of Jeddah, College of Science and Arts at Khulis, Department of Biology, Jeddah, Saudi Arabia
| | - Roushdy M Mohamed
- University of Jeddah, College of Science and Arts at Khulis, Department of Biology, Jeddah, Saudi Arabia.
| | - Nasser M Al-Shibly
- Physiotherapy Department, College of Applied Health Sciences, Jerash University, Jerash, Jordan
| | - Mahmoud Ragab
- Information Technology Department, Faculty of Computing and Information Technology, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.
| |
Collapse
|
11
|
Alzubaidi L, Salhi A, A.Fadhel M, Bai J, Hollman F, Italia K, Pareyon R, Albahri AS, Ouyang C, Santamaría J, Cutbush K, Gupta A, Abbosh A, Gu Y. Trustworthy deep learning framework for the detection of abnormalities in X-ray shoulder images. PLoS One 2024; 19:e0299545. [PMID: 38466693 PMCID: PMC10927121 DOI: 10.1371/journal.pone.0299545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/12/2024] [Indexed: 03/13/2024] Open
Abstract
Musculoskeletal conditions affect an estimated 1.7 billion people worldwide, causing intense pain and disability. These conditions lead to 30 million emergency room visits yearly, and the numbers are only increasing. However, diagnosing musculoskeletal issues can be challenging, especially in emergencies where quick decisions are necessary. Deep learning (DL) has shown promise in various medical applications. However, previous methods had poor performance and a lack of transparency in detecting shoulder abnormalities on X-ray images due to a lack of training data and better representation of features. This often resulted in overfitting, poor generalisation, and potential bias in decision-making. To address these issues, a new trustworthy DL framework has been proposed to detect shoulder abnormalities (such as fractures, deformities, and arthritis) using X-ray images. The framework consists of two parts: same-domain transfer learning (TL) to mitigate imageNet mismatch and feature fusion to reduce error rates and improve trust in the final result. Same-domain TL involves training pre-trained models on a large number of labelled X-ray images from various body parts and fine-tuning them on the target dataset of shoulder X-ray images. Feature fusion combines the extracted features with seven DL models to train several ML classifiers. The proposed framework achieved an excellent accuracy rate of 99.2%, F1Score of 99.2%, and Cohen's kappa of 98.5%. Furthermore, the accuracy of the results was validated using three visualisation tools, including gradient-based class activation heat map (Grad CAM), activation visualisation, and locally interpretable model-independent explanations (LIME). The proposed framework outperformed previous DL methods and three orthopaedic surgeons invited to classify the test set, who obtained an average accuracy of 79.1%. The proposed framework has proven effective and robust, improving generalisation and increasing trust in the final results.
Collapse
Affiliation(s)
- Laith Alzubaidi
- School of Mechanical, Medical, and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- Queensland Unit for Advanced Shoulder Research (QUASR)/ARC Industrial Transformation Training Centre—Joint Biomechanics, Queensland University of Technology, Brisbane, QLD, Australia
- Centre for Data Science, Queensland University of Technology, Brisbane, QLD, Australia
- Akunah Medical Technology Pty Ltd Company, Brisbane, QLD, Australia
| | - Asma Salhi
- Queensland Unit for Advanced Shoulder Research (QUASR)/ARC Industrial Transformation Training Centre—Joint Biomechanics, Queensland University of Technology, Brisbane, QLD, Australia
- Akunah Medical Technology Pty Ltd Company, Brisbane, QLD, Australia
| | | | - Jinshuai Bai
- School of Mechanical, Medical, and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- Queensland Unit for Advanced Shoulder Research (QUASR)/ARC Industrial Transformation Training Centre—Joint Biomechanics, Queensland University of Technology, Brisbane, QLD, Australia
| | - Freek Hollman
- Queensland Unit for Advanced Shoulder Research (QUASR)/ARC Industrial Transformation Training Centre—Joint Biomechanics, Queensland University of Technology, Brisbane, QLD, Australia
| | - Kristine Italia
- Akunah Medical Technology Pty Ltd Company, Brisbane, QLD, Australia
| | - Roberto Pareyon
- Queensland Unit for Advanced Shoulder Research (QUASR)/ARC Industrial Transformation Training Centre—Joint Biomechanics, Queensland University of Technology, Brisbane, QLD, Australia
| | - A. S. Albahri
- Technical College, Imam Ja’afar Al-Sadiq University, Baghdad, Iraq
| | - Chun Ouyang
- School of Information Systems, Queensland University of Technology, Brisbane, QLD, Australia
| | - Jose Santamaría
- Department of Computer Science, University of Jaén, Jaén, Spain
| | - Kenneth Cutbush
- Queensland Unit for Advanced Shoulder Research (QUASR)/ARC Industrial Transformation Training Centre—Joint Biomechanics, Queensland University of Technology, Brisbane, QLD, Australia
- School of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Ashish Gupta
- Queensland Unit for Advanced Shoulder Research (QUASR)/ARC Industrial Transformation Training Centre—Joint Biomechanics, Queensland University of Technology, Brisbane, QLD, Australia
- Akunah Medical Technology Pty Ltd Company, Brisbane, QLD, Australia
- Greenslopes Private Hospital, Brisbane, QLD, Australia
| | - Amin Abbosh
- School of Information Technology and Electrical Engineering, Brisbane, QLD, Australia
| | - Yuantong Gu
- School of Mechanical, Medical, and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- Queensland Unit for Advanced Shoulder Research (QUASR)/ARC Industrial Transformation Training Centre—Joint Biomechanics, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
12
|
Li Z, Wang Y, Zhang J, Wu W, Yu H. Two-and-a-half order score-based model for solving 3D ill-posed inverse problems. Comput Biol Med 2024; 168:107819. [PMID: 38064853 DOI: 10.1016/j.compbiomed.2023.107819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/25/2023] [Accepted: 12/03/2023] [Indexed: 01/10/2024]
Abstract
Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) are crucial technologies in the field of medical imaging. Score-based models demonstrated effectiveness in addressing different inverse problems encountered in the field of CT and MRI, such as sparse-view CT and fast MRI reconstruction. However, these models face challenges in achieving accurate three dimensional (3D) volumetric reconstruction. The existing score-based models predominantly concentrate on reconstructing two-dimensional (2D) data distributions, resulting in inconsistencies between adjacent slices in the reconstructed 3D volumetric images. To overcome this limitation, we propose a novel two-and-a-half order score-based model (TOSM). During the training phase, our TOSM learns data distributions in 2D space, simplifying the training process compared to working directly on 3D volumes. However, during the reconstruction phase, the TOSM utilizes complementary scores along three directions (sagittal, coronal, and transaxial) to achieve a more precise reconstruction. The development of TOSM is built on robust theoretical principles, ensuring its reliability and efficacy. Through extensive experimentation on large-scale sparse-view CT and fast MRI datasets, our method achieved state-of-the-art (SOTA) results in solving 3D ill-posed inverse problems, averaging a 1.56 dB peak signal-to-noise ratio (PSNR) improvement over existing sparse-view CT reconstruction methods across 29 views and 0.87 dB PSNR improvement over existing fast MRI reconstruction methods with × 2 acceleration. In summary, TOSM significantly addresses the issue of inconsistency in 3D ill-posed problems by modeling the distribution of 3D data rather than 2D distribution which has achieved remarkable results in both CT and MRI reconstruction tasks.
Collapse
Affiliation(s)
- Zirong Li
- Department of Biomedical Engineering, Sun-Yat-sen University, Shenzhen Campus, Shenzhen, China
| | - Yanyang Wang
- Department of Biomedical Engineering, Sun-Yat-sen University, Shenzhen Campus, Shenzhen, China
| | - Jianjia Zhang
- Department of Biomedical Engineering, Sun-Yat-sen University, Shenzhen Campus, Shenzhen, China
| | - Weiwen Wu
- Department of Biomedical Engineering, Sun-Yat-sen University, Shenzhen Campus, Shenzhen, China.
| | - Hengyong Yu
- Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, MA, USA.
| |
Collapse
|
13
|
Riaz Z, Khan B, Abdullah S, Khan S, Islam MS. Lung Tumor Image Segmentation from Computer Tomography Images Using MobileNetV2 and Transfer Learning. Bioengineering (Basel) 2023; 10:981. [PMID: 37627866 PMCID: PMC10451633 DOI: 10.3390/bioengineering10080981] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Lung cancer is one of the most fatal cancers worldwide, and malignant tumors are characterized by the growth of abnormal cells in the tissues of lungs. Usually, symptoms of lung cancer do not appear until it is already at an advanced stage. The proper segmentation of cancerous lesions in CT images is the primary method of detection towards achieving a completely automated diagnostic system. METHOD In this work, we developed an improved hybrid neural network via the fusion of two architectures, MobileNetV2 and UNET, for the semantic segmentation of malignant lung tumors from CT images. The transfer learning technique was employed and the pre-trained MobileNetV2 was utilized as an encoder of a conventional UNET model for feature extraction. The proposed network is an efficient segmentation approach that performs lightweight filtering to reduce computation and pointwise convolution for building more features. Skip connections were established with the Relu activation function for improving model convergence to connect the encoder layers of MobileNetv2 to decoder layers in UNET that allow the concatenation of feature maps with different resolutions from the encoder to decoder. Furthermore, the model was trained and fine-tuned on the training dataset acquired from the Medical Segmentation Decathlon (MSD) 2018 Challenge. RESULTS The proposed network was tested and evaluated on 25% of the dataset obtained from the MSD, and it achieved a dice score of 0.8793, recall of 0.8602 and precision of 0.93. It is pertinent to mention that our technique outperforms the current available networks, which have several phases of training and testing.
Collapse
Affiliation(s)
- Zainab Riaz
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong SAR, China; (Z.R.); (B.K.); (M.S.I.)
| | - Bangul Khan
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong SAR, China; (Z.R.); (B.K.); (M.S.I.)
- Department of Biomedical Engineering, City University Hongkong, Hong Kong SAR, China
| | - Saad Abdullah
- Division of Intelligent Future Technologies, School of Innovation, Design and Engineering, Mälardalen University, P.O. Box 883, 721 23 Västerås, Sweden
| | - Samiullah Khan
- Center for Eye & Vision Research, 17W Science Park, Hong Kong SAR, China;
| | - Md Shohidul Islam
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong SAR, China; (Z.R.); (B.K.); (M.S.I.)
| |
Collapse
|