1
|
Ding S, Chen X, Yu B, Liu Z. Electrochemical biosensors for clinical detection of bacterial pathogens: advances, applications, and challenges. Chem Commun (Camb) 2024; 60:9513-9525. [PMID: 39120607 DOI: 10.1039/d4cc02272f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Bacterial pathogens are responsible for a variety of human diseases, necessitating their prompt detection for effective diagnosis and treatment of infectious diseases. Over recent years, electrochemical methods have gained significant attention owing to their exceptional sensitivity and rapidity. This review outlines the current landscape of electrochemical biosensors employed in clinical diagnostics for the detection of bacterial pathogens. We categorize these biosensors into four types: amperometry, potentiometry, electrochemical impedance spectroscopy, and conductometry, targeting various bacterial components, including toxins, virulence factors, metabolic activity, and events related to bacterial adhesion and invasion. We discuss the merits and challenges associated with electrochemical methods, underscoring their rapid response, high sensitivity, and specificity, while acknowledging the necessity for skilled operators and potential interference from biological and environmental factors. Furthermore, we examine future prospects and potential applications of electrochemical biosensors in clinical diagnostics. While electrochemical biosensors offer a promising avenue for detecting bacterial pathogens, further research in optimizing the robustness and surmounting the challenges hindering their seamless integration into clinical practice is imperative.
Collapse
Affiliation(s)
- Shengyong Ding
- Research Center of Biomedical Sensing Engineering Technology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, People's Republic of China
| | - Xiaodi Chen
- Department of Clinical Laboratory, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Bin Yu
- Research Center of Biomedical Sensing Engineering Technology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhiyuan Liu
- Research Center of Biomedical Sensing Engineering Technology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- Neural Engineering Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
| |
Collapse
|
2
|
Kalantar-Zadeh K, Susic D, Hyett J. Vaginal Sensors. ACS Sens 2024; 9:3810-3827. [PMID: 39024191 DOI: 10.1021/acssensors.4c00567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The development and market emergence of vaginal sensors have begun to demonstrate their impact on women's healthcare. Until recently, in limited cases, these sensors have exhibited their capabilities in diagnosing and monitoring disorders of the vaginal tract during different stages of women's lives. This Perspective is a compilation of what has been accomplished so far in the landscape of vaginal sensors. The text explores the diverse types of vaginal sensor technologies, their applications, and their potential impact on women's healthcare. The review introduces the anatomy of the vagina and cervix and categorizes vaginal sensors that have been developed, highlighting the technologies and potential applications. The paper covers biomarkers of the vaginal tract and discusses their importance in maintaining the overall characteristics of the vaginal system. The text also explores the clinical implications of vaginal sensors in pregnancy monitoring, disease detection, and sexual health management. In the final step, the manuscript provides future perspectives and possibilities that can be incorporated in the emerging field of vaginal sensors.
Collapse
Affiliation(s)
- Kourosh Kalantar-Zadeh
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, NSW 2008, Australia
| | - Daniella Susic
- School of Clinical Medicine, Discipline of Women's Health, University of New South Wales, Sydney, NSW 2052, Australia
- Department of Obstetrics and Gynaecology, Liverpool Hospital, Liverpool, NSW 2170, Australia
| | - Jon Hyett
- Department of Obstetrics and Gynaecology, Royal Prince Alfred Hospital, The University of Sydney, Camperdown, NSW 2050, Australia
| |
Collapse
|
3
|
Mirabootalebi SO, Liu Y. Recent advances in nanomaterial-based solid-contact ion-selective electrodes. Analyst 2024; 149:3694-3710. [PMID: 38885067 DOI: 10.1039/d4an00334a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Solid-contact ion-selective electrodes (SC-ISEs) are advanced potentiometric sensors with great capability to detect a wide range of ions for the monitoring of industrial processes and environmental pollutants, as well as the determination of electrolytes for clinical analysis. Over the past decades, the innovative design of ion-selective electrodes (ISEs), specifically SC-ISEs, to improve potential stability and miniaturization for in situ/real-time analysis, has attracted considerable interest. Recently, the utilisation of nanomaterials was particularly prominent in SC-ISEs due to their excellent physical and chemical properties. In this article, we review the recent applications of various types of nanostructured materials that are composed of carbon, metals and polymers for the development of SC-ISEs. The challenges and opportunities in this field, along with the prospects for future applications of nanomaterials in SC-ISEs are also discussed.
Collapse
Affiliation(s)
| | - Yang Liu
- College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia.
| |
Collapse
|
4
|
Amirghasemi F, Nejad SK, Chen R, Soleimani A, Ong V, Shroff N, Eftekhari T, Ushijima K, Ainla A, Siegel S, Mousavi MPS. LiFT (a Lithium Fiber-Based Test): An At-Home Companion Diagnostics for a Safer Lithium Therapy in Bipolar Disorder. Adv Healthc Mater 2024; 13:e2304122. [PMID: 38563494 PMCID: PMC11466011 DOI: 10.1002/adhm.202304122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/23/2024] [Indexed: 04/04/2024]
Abstract
This work presents LiFT (a lithium fiber-based test), a low-cost electrochemical sensor that can measure lithium in human saliva and urine with FDA-required accuracy. Lithium is used for the treatment of bipolar disorder, and has a narrow therapeutic window. Close monitoring of lithium concentration in biofluids and adjustment of drug dosage can minimize the devastating side effects. LiFT is an inexpensive, yet accurate and simple-to-operate lithium sensor for frequent at-home testing for early identification of lithium toxicity. The low cost and high accuracy of LiFT are enabled through an innovative design and the use of ubiquitous materials such as yarn and carbon black for fabrication. LiFT measures Li+ through potentiometric recognition using a lithium selective sensing membrane that is deposited on the ink-coated yarn. A detection limit of 0.97 µM is obtained with a sensitivity of 59.07±1.25 mV/decade for the Li+ sensor in deionized water. Moreover, the sodium correction extended LiFT's linear range in urine and saliva to 0.5 mM. The LiFT platform sends the test results to the patient's smartphone, which subsequently can be shared with the patient's healthcare provider to expedite diagnosis and prevention of acute lithium toxicity.
Collapse
Affiliation(s)
- Farbod Amirghasemi
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, 90089, CA, US
| | - Sina Khazaee Nejad
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, 90089, CA, US
| | - Ruitong Chen
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, 90089, CA, US
| | - Ali Soleimani
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, 90089, CA, US
| | - Victor Ong
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, 90089, CA, US
| | - Nika Shroff
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, 90089, CA, US
| | - Tanya Eftekhari
- Kern Medical Center, 1700 Mount Vernon Ave, Bakersfield, CA, 93306, US
| | - Kara Ushijima
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, 90089, CA, US
| | - Alar Ainla
- International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
| | - Steven Siegel
- Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, 1975 Zonal Ave, Los Angeles, 90033, CA, US
| | - Maral P. S. Mousavi
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, 90089, CA, US
| |
Collapse
|
5
|
Abou Chacra L, Drouet H, Ly C, Bretelle F, Fenollar F. Evaluation of Various Diagnostic Strategies for Bacterial Vaginosis, Including a New Approach Based on MALDI-TOF Mass Spectrometry. Microorganisms 2024; 12:111. [PMID: 38257938 PMCID: PMC10821145 DOI: 10.3390/microorganisms12010111] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/19/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Bacterial vaginosis (BV) is a common dysbiosis of unclear etiology but with potential consequences representing a public health problem. The diagnostic strategies vary widely. The Amsel criteria and Nugent score have obvious limitations, while molecular biology techniques are expensive and not yet widespread. We set out to evaluate different diagnostic strategies from vaginal samples using (1) a combination of abnormal vaginal discharge and vaginal pH > 4.5; (2) the Amsel-like criteria (replacing the "whiff test" with "malodorous discharge"); (3) the Nugent score; (4) the molecular quantification of Fannyhessea vaginae and Gardnerella vaginalis (qPCR); (5) and MALDI-TOF mass spectrometry (we also refer to it as "VAGI-TOF"). Overall, 54/129 patients (42%) were diagnosed with BV using the combination of vaginal discharge and pH, 46/118 (39%) using the Amsel-like criteria, 31/130 (24%) using qPCR, 32/130 (25%) using "VAGI-TOF", and 23/84 (27%) using the Nugent score (not including the 26 (31%) with intermediate flora). Of the 84 women for whom the five diagnostic strategies were performed, the diagnosis of BV was considered for 38% using the combination of vaginal discharge and pH, 34.5% using the Amsel-like criteria, 27% using the Nugent score, 25% using qPCR, and 25% using "VAGI-TOF". When qPCR was considered as the reference, the sensitivity rate for BV was 76.2% for the combination of vaginal discharge and pH, 90.5% for the Amsel-like criteria, 95.2% for the Nugent score, and 90.5% for "VAGI-TOF", while the specificity rates were 74.6%, 84.1%, 95.3%, and 95.3%, respectively. When the Nugent score was considered as the reference, the sensitivity for BV was 69.6% for the combination of vaginal discharge and pH, 82.6% for the Amsel-like criteria, 87% for qPCR, and 78.7% for "VAGI-TOF", while the specificity rates were 80%, 94.3%, 100%, and 97.1%, respectively. Overall, the use of qPCR and "VAGI-TOF" provided a consistent diagnosis of BV, followed by the Nugent score. If qPCR seems tedious and for some costly, "VAGI-TOF" could be an inexpensive, practical, and less time-consuming alternative.
Collapse
Affiliation(s)
- Linda Abou Chacra
- Campus Santé Timone, Aix-Marseille University, IRD, AP-HM, SSA, VITROME, 13005 Marseille, France; (L.A.C.); (H.D.); (C.L.)
- IHU-Méditerranée Infection, 13005 Marseille, France
| | - Hortense Drouet
- Campus Santé Timone, Aix-Marseille University, IRD, AP-HM, SSA, VITROME, 13005 Marseille, France; (L.A.C.); (H.D.); (C.L.)
- IHU-Méditerranée Infection, 13005 Marseille, France
| | - Claudia Ly
- Campus Santé Timone, Aix-Marseille University, IRD, AP-HM, SSA, VITROME, 13005 Marseille, France; (L.A.C.); (H.D.); (C.L.)
- IHU-Méditerranée Infection, 13005 Marseille, France
| | - Florence Bretelle
- Campus Santé Timone, Aix-Marseille University, IRD, AP-HM, MEPHI, 13005 Marseille, France;
- Department of Gynaecology and Obstetrics, Gynépole, La Conception, AP-HM, 13005 Marseille, France
| | - Florence Fenollar
- Campus Santé Timone, Aix-Marseille University, IRD, AP-HM, SSA, VITROME, 13005 Marseille, France; (L.A.C.); (H.D.); (C.L.)
- IHU-Méditerranée Infection, 13005 Marseille, France
| |
Collapse
|
6
|
Chen R, Amirghasemi F, Ma H, Ong V, Tran A, Mousavi MPS. Toward Personalized Treatment of Depression: An Affordable Citalopram Test based on a Solid-Contact Potentiometric Electrode for at-Home Monitoring of the Antidepressant Dosage. ACS Sens 2023; 8:3943-3951. [PMID: 37734027 PMCID: PMC11446579 DOI: 10.1021/acssensors.3c01545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Citalopram (CTLP) is one of the most common antidepressants prescribed worldwide. It has a narrow therapeutic window and can cause severe toxicity and mortality if the dosage exceeds the safe level. Reports indicated that at-home monitoring of citalopram dosage considerably benefits the patients, yet there are no devices capable of such measurement of citalopram in biofluids. This work presents an affordable citalopram test for at-home and point-of-care monitoring of citalopram levels in urine, ensuring a safe and effective drug compliance. Our platform consists of a citalopram-selective yarn-based electrode (CTLP-SYE) that uses polymeric sensing membranes to provide valuable information about drug concentration in urine. CTLP-SYE is noninvasive and has a response time of fewer than 10 s. The fabricated electrode showed near-Nernstian behavior with a 52.3 mV/decade slope in citalopram hydrobromide solutions ranging from 0.5 μM to 1.0 mM, with a detection limit of 0.2 μM. Results also indicated that neither interfering ions nor pH affects electrode performance. We showed that CTLP-SYE could accurately and reproducibly measure citalopram in human urine (RSD 2.0 to 3.2%, error <12%) at clinically relevant concentrations. This work paves the way for the personalized treatment of depression and accessible companion diagnostics to improve treatment efficacy and safety.
Collapse
Affiliation(s)
- Ruitong Chen
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Farbod Amirghasemi
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Haozheng Ma
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Victor Ong
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Ava Tran
- Mork Family Department of Chemical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Maral P S Mousavi
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
7
|
Amirghasemi F, Soleimani A, Bawarith S, Tabassum A, Morrel A, Mousavi MPS. FAST (Flexible Acetylcholine Sensing Thread): Real-Time Detection of Acetylcholine with a Flexible Solid-Contact Potentiometric Sensor. Bioengineering (Basel) 2023; 10:655. [PMID: 37370586 DOI: 10.3390/bioengineering10060655] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Acetylcholine (ACh) is involved in memory and learning and has implications in neurodegenerative diseases; it is therefore important to study the dynamics of ACh in the brain. This work creates a flexible solid-contact potentiometric sensor for in vitro and in vivo recording of ACh in the brain and tissue homogenate. We fabricate this sensor using a 250 μm diameter cotton yarn coated with a flexible conductive ink and an ACh sensing membrane that contains a calix[4]arene ionophore. The exposed ion-to-electron transducer was sealed with a 2.5 μm thick Parylene C coating to maintain the flexibility of the sensor. The resulting diameter of the flexible ACh sensing thread (FAST) was 400 μm. The FAST showed a linear response range from 1.0 μM to 10.0 mM in deionized water, with a near-Nernstian slope of 56.11 mV/decade and a limit of detection of 2.6 μM. In artificial cerebrospinal fluid, the limit of detection increased to 20 μM due to the background signal of ionic content of the cerebrospinal fluid. The FAST showed a signal stability of 226 μV/h over 24 h. We show that FAST can measure ACh dynamics in sheep brain tissue and sheep brain homogenate after ACh spiking. FAST is the first flexible electrochemical sensor for monitoring ACh dynamics in the brain.
Collapse
Affiliation(s)
- Farbod Amirghasemi
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Ali Soleimani
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Shahd Bawarith
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Asna Tabassum
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Alayne Morrel
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Maral P S Mousavi
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
8
|
Ong V, Cortez NR, Xu Z, Amirghasemi F, Abd El-Rahman MK, Mousavi MPS. An Accessible Yarn-Based Sensor for In-Field Detection of Succinylcholine Poisoning. CHEMOSENSORS 2023; 11:175. [DOI: 10.3390/chemosensors11030175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Succinylcholine (SUX) is a clinical anesthetic that induces temporary paralysis and is degraded by endogenous enzymes within the body. In high doses and without respiratory support, it results in rapid and untraceable death by asphyxiation. A potentiometric thread-based method was developed for the in-field and rapid detection of SUX for forensic use. We fabricated the first solid-contact SUX ion-selective electrodes from cotton yarn, a carbon black ink, and a polymeric ion-selective membrane. The electrodes could selectively measure SUX in a linear range of 1 mM to 4.3 μM in urine, with a Nernstian slope of 27.6 mV/decade. Our compact and portable yarn-based SUX sensors achieved 94.1% recovery at low concentrations, demonstrating feasibility in real-world applications. While other challenges remain, the development of a thread-based ion-selective electrode for SUX detection shows that it is possible to detect this poison in urine and paves the way for other low-cost, rapid forensic diagnostic devices.
Collapse
Affiliation(s)
- Victor Ong
- Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, CA 90089, USA
| | - Nicholas R. Cortez
- Department of Biological Sciences, University of Southern California, Allan Hancock Foundation Building, Los Angeles, CA 90089, USA
| | - Ziru Xu
- Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, CA 90089, USA
| | - Farbod Amirghasemi
- Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, CA 90089, USA
| | - Mohamed K. Abd El-Rahman
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr-El Aini Street, Cairo 11562, Egypt
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Maral P. S. Mousavi
- Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, CA 90089, USA
| |
Collapse
|