Anders C, Moontaha S, Real S, Arnrich B. Unobtrusive measurement of cognitive load and physiological signals in uncontrolled environments.
Sci Data 2024;
11:1000. [PMID:
39271693 PMCID:
PMC11399273 DOI:
10.1038/s41597-024-03738-7]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 08/05/2024] [Indexed: 09/15/2024] Open
Abstract
While individuals fail to assess their mental health subjectively in their day-to-day activities, the recent development of consumer-grade wearable devices has enormous potential to monitor daily workload objectively by acquiring physiological signals. Therefore, this work collected consumer-grade physiological signals from twenty-four participants, following a four-hour cognitive load elicitation paradigm with self-chosen tasks in uncontrolled environments and a four-hour mental workload elicitation paradigm in a controlled environment. The recorded dataset of approximately 315 hours consists of electroencephalography, acceleration, electrodermal activity, and photoplethysmogram data balanced across low and high load levels. Participants performed office-like tasks in the controlled environment (mental arithmetic, Stroop, N-Back, and Sudoku) with two defined difficulty levels and in the uncontrolled environments (mainly researching, programming, and writing emails). Each task label was provided by participants using two 5-point Likert scales of mental workload and stress and the pairwise NASA-TLX questionnaire. This data is suitable for developing real-time mental health assessment methods, conducting research on signal processing techniques for challenging environments, and developing personal cognitive load assistants.
Collapse