1
|
Safarkhani M, Kim H, Han S, Taghavimandi F, Park Y, Umapathi R, Jeong YS, Shin K, Huh YS. Advances in sprayable sensors for nerve agent detection. Coord Chem Rev 2024; 509:215804. [DOI: 10.1016/j.ccr.2024.215804] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Stramarkou M, Tzegiannakis I, Christoforidi E, Krokida M. Use of Electrospinning for Sustainable Production of Nanofibers: A Comparative Assessment of Smart Textiles-Related Applications. Polymers (Basel) 2024; 16:514. [PMID: 38399892 PMCID: PMC10893451 DOI: 10.3390/polym16040514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Textile production is a major component of the global industry, with sales of over USD 450 billion and estimations of an 84% increase in their demand in the next 20 years. In recent decades, protective and smart textiles have played important roles in the social economy and attracted widespread popularity thanks to their wide spectrum of applications with properties, such as antimicrobial, water-repellent, UV, chemical, and thermal protection. Towards the sustainable manufacturing of smart textiles, biodegradable, recycled, and bio-based plastics are used as alternative raw materials for fabric and yarn production using a wide variety of techniques. While conventional techniques present several drawbacks, nanofibers produced through electrospinning have superior structural properties. Electrospinning is an innovative method for fiber production based on the use of electrostatic force to create charged threads of polymer solutions. Electrospinning shows great potential since it provides control of the size, porosity, and mechanical resistance of the fibers. This review summarizes the advances in the rapidly evolving field of the production of nanofibers for application in smart and protective textiles using electrospinning and environmentally friendly polymers as raw materials, and provides research directions for optimized smart fibers in the future.
Collapse
Affiliation(s)
- Marina Stramarkou
- Laboratory of Process Analysis and Design, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechneiou St. Zografou Campus, 15780 Athens, Greece; (I.T.); (E.C.); (M.K.)
| | | | | | | |
Collapse
|
3
|
Mamun A, Kiari M, Sabantina L. A Recent Review of Electrospun Porous Carbon Nanofiber Mats for Energy Storage and Generation Applications. MEMBRANES 2023; 13:830. [PMID: 37888002 PMCID: PMC10608773 DOI: 10.3390/membranes13100830] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/28/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023]
Abstract
Electrospun porous carbon nanofiber mats have excellent properties, such as a large surface area, tunable porosity, and excellent electrical conductivity, and have attracted great attention in energy storage and power generation applications. Moreover, due to their exceptional properties, they can be used in dye-sensitized solar cells (DSSCs), membrane electrodes for fuel cells, catalytic applications such as oxygen reduction reactions (ORRs), hydrogen evolution reactions (HERs), and oxygen evolution reactions (OERs), and sensing applications such as biosensors, electrochemical sensors, and chemical sensors, providing a comprehensive insight into energy storage development and applications. This study focuses on the role of electrospun porous carbon nanofiber mats in improving energy storage and generation and contributes to a better understanding of the fabrication process of electrospun porous carbon nanofiber mats. In addition, a comprehensive review of various alternative preparation methods covering a wide range from natural polymers to synthetic carbon-rich materials is provided, along with insights into the current literature.
Collapse
Affiliation(s)
- Al Mamun
- Junior Research Group “Nanomaterials”, Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences and Arts, 33619 Bielefeld, Germany
| | - Mohamed Kiari
- Department of Physical Chemistry, Institute of Materials, University of Alicante, 03080 Alicante, Spain
| | - Lilia Sabantina
- Faculty of Apparel Engineering and Textile Processing, Berlin University of Applied Sciences—HTW Berlin, Hochschule für Technik und Wirtschaft Berlin, 12459 Berlin, Germany
| |
Collapse
|
4
|
Mirjalali S, Bagherzadeh R, Mahdavi Varposhti A, Asadnia M, Huang S, Chang W, Peng S, Wang CH, Wu S. Enhanced Piezoelectricity of PVDF-TrFE Nanofibers by Intercalating with Electrosprayed BaTiO 3. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41806-41816. [PMID: 37610412 DOI: 10.1021/acsami.3c06215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Over the past few decades, flexible piezoelectric devices have gained increasing interest due to their wide applications as wearable sensors and energy harvesters. Poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE), as one of piezoelectric polymers, has caught considerable attention because of its high flexibility, high thermal stability, and biocompatibility. However, its relatively lower piezoelectricity limits its broader applications. Herein, we present a new approach to improving the piezoelectricity of PVDF-TrFE nanofibers by integrating barium titanate (BTO) nanoparticles. Instead of being directly dispersed into PVDF-TrFE nanofibers, the BTO nanoparticles were electrosprayed between the nanofiber layers to create a sandwich structure. The results showed that the sample with BTO sandwiched between PVDF-TrFE nanofibers showed a much higher piezoelectric output compared to the sample with BTO uniformly dispersed in the nanofibers, with a maximum of ∼ 457% enhancement. Simulation results suggested that the enhanced piezoelectricity is due to the larger strain induced in the BTO nanoparticles in the sandwich structure. Additionally, BTO might be better poled during electrospraying with higher field strength, which is also believed to contribute to enhanced piezoelectricity. The potential of the piezoelectric nanofiber mats as a sensor for measuring biting force and as a sensor array for pressure mapping was demonstrated.
Collapse
Affiliation(s)
- Sheyda Mirjalali
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Roohollah Bagherzadeh
- Institute for Advanced Textile Materials and Technologies, Amirkabir University of Technology, Tehran 1591634311, Iran
| | - Arezo Mahdavi Varposhti
- Department of Engineering Science and Mechanics, The Pennsylvania State University, Pennsylvania, Pennsylvania 16802, United States
| | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Shujuan Huang
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Wenkai Chang
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Shuhua Peng
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Chun-Hui Wang
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Shuying Wu
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|