1
|
Al-Sodies S, Asiri AM, Alam MM, Alamry KA, Rahman MM, Hussein MA. Development of an efficient electrochemical sensing platform based on ter-poly(luminol- o-anisidine- o-toluidine)/ZnO/GNPs nanocomposites for the detection of antimony (Sb 3+) ions. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4333-4346. [PMID: 38888440 DOI: 10.1039/d4ay00472h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
A poly(luminol-o-anisidine-o-toluidine) terpolymer was synthesized, characterized, and modified with GNPs and ZnO NPs. The nanocomposites were then examined for their electroactivity and potential use as cationic electrochemical sensors for detecting Sb3+ ions in phosphate buffer on the surface of a glassy carbon electrode (GCE). Among the different compositions and the terpolymer, the GCE adapted with the PLAT/ZnO/GNPs-5% nanocomposite displayed the highest current response. The fabricated nanocomposite sensor exhibited high sensitivity, with a value of 21.4177 μA μM-1 cm-2, and a low detection limit of 95.42 pM. The analytical performance of the sensor was evaluated over the linear dynamic range (LDR) of 0.1 nM to 0.01 mM. The proposed sensor is effective in detecting and measuring carcinogenic Sb3+ ions in real environmental samples using an electrochemical approach, making it a promising tool for environmental monitoring.
Collapse
Affiliation(s)
- Salsabeel Al-Sodies
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia
| | - Abdullah M Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.
| | - M M Alam
- Department of Chemical Engineering, Z. H. Sikder University of Science and Technology (ZHSUST), Shariatpur-8024, Bangladesh
| | - Khalid A Alamry
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.
| | - Mohammed M Rahman
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mahmoud A Hussein
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.
- Chemistry Department, Faculty of Science, Assiut University, Assiut, 71516 Egypt
| |
Collapse
|
2
|
Santos-Betancourt A, Santos-Ceballos JC, Alouani MA, Malik SB, Romero A, Ramírez JL, Vilanova X, Llobet E. ZnO Decorated Graphene-Based NFC Tag for Personal NO 2 Exposure Monitoring during a Workday. SENSORS (BASEL, SWITZERLAND) 2024; 24:1431. [PMID: 38474967 DOI: 10.3390/s24051431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/24/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024]
Abstract
This paper presents the integration of a sensing layer over interdigitated electrodes and an electronic circuit on the same flexible printed circuit board. This integration provides an effective technique to use this design as a wearable gas measuring system in a target application, exhibiting high performance, low power consumption, and being lightweight for on-site monitoring. The wearable system proves the concept of using an NFC tag combined with a chemoresistive gas sensor as a cumulative gas sensor, having the possibility of holding the data for a working day, and completely capturing the exposure of a person to NO2 concentrations. Three different types of sensors were tested, depositing the sensing layers on gold electrodes over Kapton substrate: bare graphene, graphene decorated with 5 wt.% zinc oxide nanoflowers, or nanopillars. The deposited layers were characterized using FESEM, EDX, XRD, and Raman spectroscopy to determine their crystalline structure, morphological and chemical compositions. The gas sensing performance of the sensors was analyzed against NO2 (dry and humid conditions) and other interfering species (dry conditions) to check their sensitivity and selectivity. The resultant-built wearable NFC tag system accumulates the data in a non-volatile memory every minute and has an average low power consumption of 24.9 µW in dynamic operation. Also, it can be easily attached to a work vest.
Collapse
Affiliation(s)
- Alejandro Santos-Betancourt
- Universitat Rovira i Virgili, Microsystems Nanotechnologies for Chemical Analysis (MINOS), Departament d'Enginyeria Electronica, Països Catalans, 26, 43007 Tarragona, Catalunya, Spain
| | - José Carlos Santos-Ceballos
- Universitat Rovira i Virgili, Microsystems Nanotechnologies for Chemical Analysis (MINOS), Departament d'Enginyeria Electronica, Països Catalans, 26, 43007 Tarragona, Catalunya, Spain
| | - Mohamed Ayoub Alouani
- Universitat Rovira i Virgili, Microsystems Nanotechnologies for Chemical Analysis (MINOS), Departament d'Enginyeria Electronica, Països Catalans, 26, 43007 Tarragona, Catalunya, Spain
| | - Shuja Bashir Malik
- Universitat Rovira i Virgili, Microsystems Nanotechnologies for Chemical Analysis (MINOS), Departament d'Enginyeria Electronica, Països Catalans, 26, 43007 Tarragona, Catalunya, Spain
| | - Alfonso Romero
- Universitat Rovira i Virgili, Microsystems Nanotechnologies for Chemical Analysis (MINOS), Departament d'Enginyeria Electronica, Països Catalans, 26, 43007 Tarragona, Catalunya, Spain
| | - José Luis Ramírez
- Universitat Rovira i Virgili, Microsystems Nanotechnologies for Chemical Analysis (MINOS), Departament d'Enginyeria Electronica, Països Catalans, 26, 43007 Tarragona, Catalunya, Spain
| | - Xavier Vilanova
- Universitat Rovira i Virgili, Microsystems Nanotechnologies for Chemical Analysis (MINOS), Departament d'Enginyeria Electronica, Països Catalans, 26, 43007 Tarragona, Catalunya, Spain
| | - Eduard Llobet
- Universitat Rovira i Virgili, Microsystems Nanotechnologies for Chemical Analysis (MINOS), Departament d'Enginyeria Electronica, Països Catalans, 26, 43007 Tarragona, Catalunya, Spain
| |
Collapse
|