1
|
Alam MST, Urooj S, Ansari AQ, Arif A. Design and Performance Assessment of Biocompatible Capacitive Pressure Sensors with Circular and Square Geometries Using ANSYS Workbench. SENSORS (BASEL, SWITZERLAND) 2025; 25:2423. [PMID: 40285113 PMCID: PMC12031306 DOI: 10.3390/s25082423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/03/2025] [Accepted: 04/08/2025] [Indexed: 04/29/2025]
Abstract
This research outlines the design of capacitive pressure sensors fabricated from three biocompatible materials, featuring both circular and square geometries. The sensors were structured with a dielectric layer positioned between gold-plated electrodes at the top and bottom. Their performance was assessed through simulations conducted with ANSYS Workbench. Of the various sensor configurations tested, the circular design that included two crescent-shaped slots and a 20 µm thick PDMS dielectric material demonstrated the highest sensitivity of 10.68 fF/mmHg. This study further investigated the relationship between resonant frequency shifts and arterial blood pressure, revealing an exceptionally linear response, as evidenced by a Pearson's correlation coefficient of -0.99986 and an R-squared value of 0.99972. This confirmed the sensor's applicability for obtaining precise blood pressure measurements. Additionally, a 3 × 30 mm cobalt-chromium (Co-Cr) stent was obtained, and its inductance was measured using an impedance analyzer.
Collapse
Affiliation(s)
- Md Shams Tabraiz Alam
- Department of Electrical Engineering, Jamia Millia Islamia, New Delhi 110025, India; (M.S.T.A.); (A.Q.A.)
| | - Shabana Urooj
- Department of Electrical Engineering, College of Engineering, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Abdul Quaiyum Ansari
- Department of Electrical Engineering, Jamia Millia Islamia, New Delhi 110025, India; (M.S.T.A.); (A.Q.A.)
| | - Areiba Arif
- Jindal Global Business School, OP Jindal Global University, Sonipat 131001, India;
| |
Collapse
|
2
|
Yue W, Guo Y, Lee JC, Ganbold E, Wu JK, Li Y, Wang C, Kim HS, Shin YK, Liang JG, Kim ES, Kim NY. Advancements in Passive Wireless Sensing Systems in Monitoring Harsh Environment and Healthcare Applications. NANO-MICRO LETTERS 2025; 17:106. [PMID: 39779609 PMCID: PMC11712043 DOI: 10.1007/s40820-024-01599-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025]
Abstract
Recent advancements in passive wireless sensor technology have significantly extended the application scope of sensing, particularly in challenging environments for monitoring industry and healthcare applications. These systems are equipped with battery-free operation, wireless connectivity, and are designed to be both miniaturized and lightweight. Such features enable the safe, real-time monitoring of industrial environments and support high-precision physiological measurements in confined internal body spaces and on wearable epidermal devices. Despite the exploration into diverse application environments, the development of a systematic and comprehensive research framework for system architecture remains elusive, which hampers further optimization of these systems. This review, therefore, begins with an examination of application scenarios, progresses to evaluate current system architectures, and discusses the function of each component-specifically, the passive sensor module, the wireless communication model, and the readout module-within the context of key implementations in target sensing systems. Furthermore, we present case studies that demonstrate the feasibility of proposed classified components for sensing scenarios, derived from this systematic approach. By outlining a research trajectory for the application of passive wireless systems in sensing technologies, this paper aims to establish a foundation for more advanced, user-friendly applications.
Collapse
Affiliation(s)
- Wei Yue
- RFIC Bio Centre, Kwangwoon University, Seoul, 01897, South Korea
- Department of Electronics Engineering, Kwangwoon University, Seoul, 01897, South Korea
| | - Yunjian Guo
- RFIC Bio Centre, Kwangwoon University, Seoul, 01897, South Korea
- Department of Electronic Convergence Engineering, Kwangwoon University, Seoul, 01897, South Korea
| | - Jong-Chul Lee
- RFIC Bio Centre, Kwangwoon University, Seoul, 01897, South Korea
- Department of Electronic Convergence Engineering, Kwangwoon University, Seoul, 01897, South Korea
| | - Enkhzaya Ganbold
- RFIC Bio Centre, Kwangwoon University, Seoul, 01897, South Korea
- Department of Electronics Engineering, Kwangwoon University, Seoul, 01897, South Korea
| | - Jia-Kang Wu
- RFIC Bio Centre, Kwangwoon University, Seoul, 01897, South Korea
- Department of Electronic Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Yang Li
- RFIC Bio Centre, Kwangwoon University, Seoul, 01897, South Korea
- School of Microelectronics, Shandong University, Jinan, 250101, People's Republic of China
| | - Cong Wang
- RFIC Bio Centre, Kwangwoon University, Seoul, 01897, South Korea
- School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Hyun Soo Kim
- RFIC Bio Centre, Kwangwoon University, Seoul, 01897, South Korea
- Department of Electronics Engineering, Kwangwoon University, Seoul, 01897, South Korea
| | - Young-Kee Shin
- RFIC Bio Centre, Kwangwoon University, Seoul, 01897, South Korea.
- Laboratory of Molecular Pathology and Cancer Genomics, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, South Korea.
| | - Jun-Ge Liang
- RFIC Bio Centre, Kwangwoon University, Seoul, 01897, South Korea.
- Department of Electronic Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China.
| | - Eun-Seong Kim
- RFIC Bio Centre, Kwangwoon University, Seoul, 01897, South Korea.
| | - Nam-Young Kim
- RFIC Bio Centre, Kwangwoon University, Seoul, 01897, South Korea.
- Department of Electronics Engineering, Kwangwoon University, Seoul, 01897, South Korea.
- Laboratory of Molecular Pathology and Cancer Genomics, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
3
|
Khan MRR. Development of a Battery-Free, Chipless, and Highly Sensitive Radio Frequency Glucose Biosensor. MICROMACHINES 2024; 15:272. [PMID: 38399000 PMCID: PMC10891716 DOI: 10.3390/mi15020272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
In our study, we designed and developed a glucose biosensor that operates without a battery or chip. This biosensor utilizes the principles of radio frequency (RF) to operate. For the construction of a glucose-sensitive interdigitated capacitor (IDC), a famous glucose-sensitive substance called phenylboronic acid (PBA) is combined with a polyvinyl chloride (PVC) and n,n-dimethylacetamide (DMAC) solution. According to the theory of radio frequency sensing, the resonance frequency shifts whenever there is a change in the capacitance of the glucose-sensitive IDC. This change is caused by the fluctuations in glucose concentrations. As far as we are aware, this is the first glucose sensor that employs the RF principle to detect changes in glucose solution concentrations using PBA as the principal glucose-sensitive material. The sensor can detect glucose levels with remarkable sensitivity, around 40.89 kHz/decade, and a broad dynamic range covering 10 μM to 1 M. Additionally, the designed biosensor has excellent linearity performance, with a value of around 0.988. The proposed glucose biosensor has several benefits: lightweight, inexpensive, easy to build, and an acceptable selectivity response. Our study concludes by comparing the proposed RF sensor's effectiveness to that of existing glucose sensors, which it outperforms.
Collapse
Affiliation(s)
- Md Rajibur Rahaman Khan
- Research Institute of Engineering and Technology, Hanyang University, Ansan 15588, Republic of Korea
| |
Collapse
|