1
|
Razgonova MP, Okhlopkova ZM, Nawaz MA, Egorova PS, Golokhvast KS. Supercritical Extraction and Identification of Bioactive Compounds in Dryopteris fragrans (L.) Schott. Pharmaceuticals (Basel) 2025; 18:299. [PMID: 40143079 PMCID: PMC11946582 DOI: 10.3390/ph18030299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 02/05/2025] [Accepted: 02/05/2025] [Indexed: 03/28/2025] Open
Abstract
Background: This is a comparative metabolomic study of the medicinal plant Dryopteris fragrans (L.) Schott from the family Dryopteridaceae Herter (or Aspidiaceae Mett. ex Frank) growing under cold pole conditions in the Oymyakon region of the Republic of Sakha (Yakutia). Methods: The aerial parts of D. fragrans were subjected to extraction using supercritical CO2 extraction and maceration methods. Several experimental conditions were investigated, including a pressure range of 50-300 bar and a temperature range of 31-60 °C. A 1% volume of ethanol was used as a co-solvent in the liquid phase of the extraction. Results: The most effective D. fragrans extraction conditions were 200 Bar pressure and a temperature of 55 °C. Tandem mass spectrometry was used to detect the target analytes. A total of 141 bioactive compounds (86 compounds from the polyphenol group and 55 compounds from other chemical groups) were tentatively identified in extracts of aerial parts of D. fragrans. Among these, thirty chemical constituents from the polyphenol group were identified for the first time. Other compound classes that were newly identified in D. fragrans include naphthoquinones (5,8-dihydroxy-6-methyl-2,3-dihydro-1,4-naphthoquinone, 1,8-dihydroxy-anthraquinone, 1,4,8-trihydroxyanthraquinone, chrysophanol, etc.), diterpenoids (tanshinone IIa, cryptotanshinone, isocryptotanshinone II, tanshinone IIb, etc.), polysaccharides, triterpenoids, and sesquiterpenes. Conclusions: These results highlight that D. fragrans is rich in bioactive compounds and put forward several newly detected compounds for further investigation.
Collapse
Affiliation(s)
- Mayya P. Razgonova
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B., Saint-Petersburg 190000, Russia;
- Far Eastern Federal University, Vladivostok 690950, Russia
| | - Zhanna M. Okhlopkova
- Department of Biology, North-Eastern Federal University, Yakutsk 677000, Russia;
| | - Muhammad A. Nawaz
- Advanced Engineering School «Agrobiotek», National Research Tomsk State University, Tomsk 634050, Russia
| | - Polina S. Egorova
- Yakutsk Botanical Garden, Institute for Biological Problems of Cryolithozone, Siberian Branch, Russian Academy Sciences, Yakutsk 677007, Russia;
| | - Kirill S. Golokhvast
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B., Saint-Petersburg 190000, Russia;
- Advanced Engineering School «Agrobiotek», National Research Tomsk State University, Tomsk 634050, Russia
- Siberian Federal Scientific Centre of Agrobiotechnology, Russian Academy of Sciences, Presidium, Krasnoobsk 633501, Russia
| |
Collapse
|
2
|
Razgonova MP, Nawaz MA, Rusakova EA, Golokhvast KS. Application of Supercritical CO 2 Extraction and Identification of Polyphenolic Compounds in Three Species of Wild Rose from Kamchatka: Rosa acicularis, Rosa amblyotis, and Rosa rugosa. PLANTS (BASEL, SWITZERLAND) 2024; 14:59. [PMID: 39795319 PMCID: PMC11723076 DOI: 10.3390/plants14010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/10/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025]
Abstract
A comparative metabolomic study of three varieties of wild Rosa (Rosa acicularis, Rosa amblyotis, and Rosa rugosa) from a Kamchatka expedition (2024) was conducted via extraction with supercritical carbon dioxide modified with ethanol (EtOH), and detection of bioactive compounds was realized via tandem mass spectrometry. Several experimental conditions were investigated in the pressure range 50-350 bar, with the used volume of co-solvent ethanol in the amount of 2% in the liquid phase at a temperature in the range of 31-70 °C. The most effective extraction conditions are the following: pressure 200 Bar and temperature 55 °C for Rosa acicularis; pressure 250 Bar and temperature 60 °C for Rosa amblyotis; pressure 200 Bar and temperature 60 °C for Rosa rugosa. Three varieties of wild Rosa contain various phenolic compounds and compounds of other chemical groups with valuable biological activity. Tandem mass spectrometry (HPLC-ESI-ion trap) was applied to detect the target analytes. A total of 283 bioactive compounds (two hundred seventeen compounds from the polyphenol group and sixty-six compounds from other chemical groups) were tentatively identified in extracts from berries of wild Rosa. For the first time, forty-eight chemical constituents from the polyphenol group (15 flavones, 14 flavonols, 4 flavan-3-ols, 3 flavanones, 1 phenylpropanoid, 2 gallotannins, 1 ellagitannin, 4 phenolic acids, 1 dihydrochalcone, and 3 coumarins) were identified in supercritical extracts of R. acicularis, R. amblyotis, and R. rugosa.
Collapse
Affiliation(s)
- Mayya P. Razgonova
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya 42-44, 190000 Saint-Petersburg, Russia;
- Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia
| | - Muhammad A. Nawaz
- Advanced Engineering School “Agrobiotek”, National Research Tomsk State University, Lenin Ave, 36, 634050 Tomsk, Russia
| | - Elena A. Rusakova
- FSBSI Kamchatsky Scientific Research Institute of Agriculture, Centralnaya, 4, 684033 Sosnovka, Russia;
| | - Kirill S. Golokhvast
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya 42-44, 190000 Saint-Petersburg, Russia;
- Advanced Engineering School “Agrobiotek”, National Research Tomsk State University, Lenin Ave, 36, 634050 Tomsk, Russia
- Siberian Federal Scientific Centre of Agrobiotechnology RAS, Centralnaya 2b, Presidium, 633501 Krasnoobsk, Russia
| |
Collapse
|
3
|
Razgonova MP, Nawaz MA, Sabitov AS, Golokhvast KS. Genus Ribes: Ribes aureum, Ribes pauciflorum, Ribes triste, and Ribes dikuscha-Comparative Mass Spectrometric Study of Polyphenolic Composition and Other Bioactive Constituents. Int J Mol Sci 2024; 25:10085. [PMID: 39337572 PMCID: PMC11432568 DOI: 10.3390/ijms251810085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
This study presents the metabolomic profiles of the four Ribes species (Ribes pauciflorum Turcz., Ribes triste Pall., Ribes dicuscha Fisch., and Ribes aureum Purch.). The plant material was collected during two expeditions in the Russian Far East. Tandem mass spectrometry was used to detect target analytes. A total of 205 bioactive compounds (155 compounds from polyphenol group and 50 compounds from other chemical groups) were tentatively identified from the berries and extracts of the four Ribes species. For the first time, 29 chemical constituents from the polyphenol group were tentatively identified in the genus Ribes. The newly identified polyphenols include flavones, flavonols, flavan-3-ols, lignans, coumarins, stilbenes, and others. The other newly detected compounds in Ribes species are the naphthoquinone group (1,8-dihydroxy-anthraquinone, 1,3,6,8-tetrahydroxy-9(10H)-anthracenone, 8,8'-dihydroxy-2,2'-binaphthalene-1,1',4,4'-tetrone, etc.), polyhydroxycarboxylic acids, omega-3 fatty acids (stearidonic acid, linolenic acid), and others. Our results imply that Ribes species are rich in polyphenols, especially flavanols, anthocyanins, flavones, and flavan-3-ols. These results indicate the utility of Ribes species for the health and pharmaceutical industry.
Collapse
Affiliation(s)
- Mayya P. Razgonova
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya 42-44, Saint-Petersburg 190000, Russia; (A.S.S.); (K.S.G.)
- Advanced Engineering School, Far Eastern Federal University, Sukhanova 8, Vladivostok 690950, Russia
| | - Muhammad Amjad Nawaz
- Advanced Engineering School (Agrobiotek), National Research Tomsk State University, Lenin Ave, 36, Tomsk 634050, Russia
- Center for Research in the Field of Materials and Technologies, Tomsk State University, Lenin Ave, 36, Tomsk 634050, Russia
| | - Andrey S. Sabitov
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya 42-44, Saint-Petersburg 190000, Russia; (A.S.S.); (K.S.G.)
| | - Kirill S. Golokhvast
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya 42-44, Saint-Petersburg 190000, Russia; (A.S.S.); (K.S.G.)
- Advanced Engineering School (Agrobiotek), National Research Tomsk State University, Lenin Ave, 36, Tomsk 634050, Russia
- Siberian Federal Scientific Centre of Agrobiotechnology RAS, Centralnaya 2b, Presidium, Krasnoobsk 633501, Russia
| |
Collapse
|
4
|
Recent Advances in Analysis of Food and Beverages. SEPARATIONS 2023. [DOI: 10.3390/separations10030163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
In this section, we summarize the characteristics of the published papers according to different typologies [...]
Collapse
|
5
|
On-Site Multisample Determination of Chlorogenic Acid in Green Coffee by Chemiluminiscent Imaging. Methods Protoc 2023; 6:mps6010020. [PMID: 36827507 PMCID: PMC9960562 DOI: 10.3390/mps6010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
The potential of antioxidants in preventing several diseases has attracted great attention in recent years. Indeed, these products are part of a multi-billion industry. However, there is a lack of scientific information about safety, quality, doses, and changes over time. In the present work, a simple multisample methodology based on chemiluminiscent imaging to determine chlorogenic acid (CHLA) in green coffee samples has been proposed. The multi-chemiluminiscent response was obtained after a luminol-persulfate reaction at pH 10.8 in a multiplate followed by image capture with a charge-coupled device (CCD) camera as a readout system. The chemiluminiscent image was used as an analytical response by measuring the luminescent intensity at 0 °C with the CCD camera. Under the optimal conditions, the detection limit was 20 µM and precision was also adequate with RSD < 12%. The accuracy of the proposed system was evaluated by studying the matrix effect, using a standard addition method. Recoveries of chlorogenic acid ranged from 93-94%. The use of the CCD camera demonstrated advantages such as analysis by image inspection, portability, and easy-handling which is of particular relevance in the application for quality control in industries. Furthermore, multisample analysis was allowed by one single image saving time, energy, and cost. The proposed methodology is a promising sustainable analytical tool for quality control to ensure green coffee safety through dosage control and proper labelling preventing potential frauds.
Collapse
|
6
|
Quality Evaluation of Crude and Salt-Processed Cuscutae Semen through Qualitative and Quantitative Analysis of Multiple Components Using HPLC Combined with Chemometrics. SEPARATIONS 2022. [DOI: 10.3390/separations9090231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cuscutae Semen (CS; Chinese common name “Tusizi”) is one of the most common traditional herbal medicines used to treat liver and kidney diseases in China. Although it is most commonly used as a processed product, little progress has been made on the quality control of CS and salt-processed Cuscutae Semen (PCS). The purpose of this study was to establish a comprehensive strategy integrating chromatographic analysis and chemometric methods for quality evaluation and discrimination of CS and PCS. An accurate and reliable HPLC method was established for the simultaneous quantification of 12 analyte compounds in CS and PCS. The results showed that this method exhibited desirable sensitivity, precision, stability, and repeatability. Multivariate chemometric methods were applied to analyze the obtained HPLC fingerprints, including hierarchical cluster analysis (HCA), principle component analysis (PCA), and partial least squares discriminant analysis (PLS-DA). The results indicated that CS and PCS samples showed a clear classification of the two groups, and three chemical markers with great contributions to the differentiation were screened out. Collectively, the chemometrics combined with the quantitative analysis based on HPLC fingerprint results indicated that salt processing may change the contents and types of components in Cuscutae Semen.
Collapse
|