1
|
Chen Y, Chen Y, Li Y, Liu Y, Li H, Jiang H, Luo X, Tang P, Chen L, Yan H. Evolution of humic substances and the forms of heavy metals during co-composting of rice straw and sediment with the aid of Fenton-like process. BIORESOURCE TECHNOLOGY 2021; 333:125170. [PMID: 33932807 DOI: 10.1016/j.biortech.2021.125170] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
The Fenton-like process was established by Fe3O4 nanomaterials (NMs) and Phanerochaete chrysosporium or oxalate, and applied to the co-composting of rice straw and sediment to study its effect on the formation of humic substance and the bioavailability of Cd, Cu, and Pb. Results shown that the application of Fenton-like process significantly promoted the passivation of Cd and Cu, while not shown obvious enhancement for Pb. The decrease of exchangeable fraction Cd (EXC-Cd) and the humic acid (HA) content in pile B with Fe3O4 NMs and oxalate were highest, which were 22.35% and 20.3 g/kg, respectively. Redundancy analyses (RDA) manifested that the Fenton-like process enhanced the influence of humus substance on the bioavailability of Cd, Cu, and Pb. Excitation-emission matrix (EEM) fluorescence spectra analysis suggested that Fenton-like process could obviously enhance the generation of humic substance. This research provides a new perspective and way for composting to remediate heavy metals pollution.
Collapse
Affiliation(s)
- Yanrong Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yaoning Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| | - Yuanping Li
- College of Municipal and Mapping Engineering, Hunan City University, Yiyang, Hunan 413000, China
| | - Yihuan Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Hui Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, PR China
| | - Hongjuan Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Xinli Luo
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Ping Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Li Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Haoqin Yan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| |
Collapse
|