1
|
The Delineation and Ecological Connectivity of the Three Parallel Rivers Natural World Heritage Site. BIOLOGY 2022; 12:biology12010003. [PMID: 36671697 PMCID: PMC9855409 DOI: 10.3390/biology12010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Landscape connectivity refers to the degree of continuity between the spatially structured units of a landscape. Ecological connectivity can characterise the degree to which ecological functional areas are connected in terms of function and ecological processes. In this study, the landscape pattern index and ecosystem service values were used to evaluate the ecological functional resistance of each landscape type, taking the Three Parallel Rivers Natural World Heritage Site as an example and the habitat distribution and population size of the Yunnan snub-nosed monkey as a reference. The minimum cost distance model, combined with the barrier impact index (BEI) and ecological connectivity index (ECI), was used to determine the degree of barrier impact on the study area and the ecological connectivity of the core reserve of the heritage site in both 2000 and 2020. The resistances of the different land types and landscape heterogeneity to the ecological function of species migration between the core protected areas of the heritage site were, in descending order, those of the forest, shrubs and grass, water, unused land, cultivated land, and built-up land. In 2020, the study area had a large BEI, with areas such as built-up areas, major roads, the sides of large rivers, and arable land being significant contributors to the blockage of landscape connectivity. The overall landscape connectivity in the study area was generally low, with clear spatial differentiation and a three-column parallel distribution pattern influenced by the topography and landscape. With the adjustment of the core reserve boundaries of the heritage site, the proportion of areas with high connectivity (ECI = 4-5) increased from 11.31% in 2000 to 34.36% in 2020. This increased landscape connectivity was conducive to the migration and reproduction of large terrestrial animals, such as the Yunnan snub-nosed monkey, with increasing numbers of populations and individuals. This study provides theoretical and methodological insights into the delineation and conservation of natural heritage sites and landscape connectivity.
Collapse
|
2
|
Biodiversity in Urban Areas: The Extraordinary Case of Appia Antica Regional Park (Rome, Italy). PLANTS 2022; 11:plants11162122. [PMID: 36015425 PMCID: PMC9414419 DOI: 10.3390/plants11162122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022]
Abstract
The first inventory of the flora of Appia Antica Regional Park (Italy), one of the largest protected urban areas in Europe (4580 ha), its biological, ecological and biogeographical composition, and notes of the vegetation physiognomies and landscape are presented; physical characteristics of the territory (geomorphology, lithotypes, and phytoclimate) are also given. The landscape is defined by an agricultural matrix with natural and seminatural areas as patches, and riparian vegetation communities as corridors. The vegetation physiognomies are represented by types linked to the Mediterranean climate (mixed, Mediterranean, and riparian forests; scrubby, rocky, aquatic, and helophytic vegetation; anthropogenic communities). The floristic list includes 714 taxa (104 families and 403 genera). Therophytes prevail over hemicryptophytes; woody flora comprises about 30% of alien species. As regards chorotypes, together with a considerable number of Mediterranean species, there are many exotic species with wide distribution areas testifying to a long-lasting anthropic impact. Floristic novelties (european, national, and regional levels) for 21 taxa are reported. The extraordinary species diversity discovered (43% of flora of Rome and 20% of regional flora) is linked to the landscape heterogeneity, the characteristics of which are: (1) persistence of residual natural patches, (2) occurrence of quite well-preserved aquatic habitats and humid meadows, (3) a rich anthropogenic flora, (4) an interesting flora of archeological sites, (5) occurrence of species not common in Latium, (6) occurrence of populations of aliens in crops (which cause economic impact), (7) presence of aliens on archeological ruins (which cause economic-social impacts). The extensive set of data provided represents a general base framework for guiding future research efforts and landscape action plans consistent with environmental sustainability.
Collapse
|
3
|
Facing Multiple Environmental Challenges through Maximizing the Co-Benefits of Nature-Based Solutions at a National Scale in Italy. FORESTS 2022. [DOI: 10.3390/f13040548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The European Union is significantly investing in the Green Deal that introduces measures to guide Member States to face sustainability and health challenges, especially employing Nature-Based Solutions (NBS) in urban contexts. National governments need to develop appropriate strategies to coordinate local projects, face multiple challenges, and maximize NBS effectiveness. This paper aims to introduce a replicable methodology to integrate NBS into a multi-scale planning process to maximize their cost–benefits. Using Italy as a case study, we mapped three environmental challenges nationwide related to climate change and air pollution, identifying spatial groups of their co-occurrences. These groups serve as functional areas where 24 NBS were ranked for their ecosystem services supply and land cover. The results show eight different spatial groups, with 6% of the national territory showing no challenge, with 42% showing multiple challenges combined simultaneously. Seven NBS were high-performing in all groups: five implementable in permeable land covers (urban forests, infiltration basins, green corridors, large parks, heritage gardens), and two in impervious ones (intensive, semi-intensive green roofs). This work provides a strategic vision at the national scale to quantify and orient budget allocation, while on a municipal scale, the NBS ranking acts as a guideline for specific planning activities based on local issues.
Collapse
|
4
|
García de León D, Rey Benayas JM, Andivia E. Contributions of Hedgerows to People: A Global Meta-Analysis. FRONTIERS IN CONSERVATION SCIENCE 2021. [DOI: 10.3389/fcosc.2021.789612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Hedgerows are linear landscape features of woody vegetation usually located around agricultural fields. An increasing number of studies have addressed the effects of hedgerows on biodiversity and ecosystem services. This study is aimed to synthesize these effects and compare the levels of biodiversity and ecosystem services in farmland with hedgerows and (1) farmland without hedgerows and (2) nearby natural habitat at the global scale. We hypothesized that farmland with hedgerows (1) enhances biodiversity and ecosystem services as compared to farmland without hedgerows but (2) supports lower levels of biodiversity and ecosystem services than natural habitat. Our systematic literature review retained 835 observations from 170 primary studies, which were analyzed following the standard methodology in meta-analyses. Our results partially support both hypotheses. Farmland with hedgerows exhibited higher levels of biodiversity and provisioning services than farmland without hedgerows (H1). Farmland with hedgerows provided similar levels of biodiversity (edge effects) but lower levels of ecosystem services than natural habitat (H2). The effects of hedgerows on biodiversity and ecosystem services depended on control ecosystem type (grassland/meadow or forest/woodland) but were largely independent of climate type (temperate or tropical) and the focus of spatial scale (field or landscape). In conclusion, conservation and restoration of hedgerows contribute to people in several ways by enhancing biodiversity and multifunctionality in agricultural landscapes.
Collapse
|
5
|
Ecological Connectivity in Agricultural Green Infrastructure: Suggested Criteria for Fine Scale Assessment and Planning. LAND 2021. [DOI: 10.3390/land10080807] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In promoting biodiversity conservation and ecosystem service capacity, landscape connectivity is considered a critical feature to counteract the negative effects of fragmentation. Under a Green Infrastructure (GI) perspective, this is especially true in rural and peri-urban areas where a high degree of connectivity may be associated with the enhancement of agriculture multifunctionality and sustainability. With respect to GI planning and connectivity assessment, the role of dispersal traits of tree species is gaining increasing attention. However, little evidence is available on how to select plant species to be primarily favored, as well as on the role of landscape heterogeneity and habitat quality in driving the dispersal success. The present work is aimed at suggesting a methodological approach for addressing these knowledge gaps, at fine scales and for peri-urban agricultural landscapes, by means of a case study in the Metropolitan City of Rome. The study area was stratified into Environmental Units, each supporting a unique type of Potential Natural Vegetation (PNV), and a multi-step procedure was designed for setting priorities aimed at enhancing connectivity. First, GI components were defined based on the selection of the target species to be supported, on a fine scale land cover mapping and on the assessment of land cover type naturalness. Second, the study area was characterized by a Morphological Spatial Pattern Analysis (MSPA) and connectivity was assessed by Number of Components (NC) and functional connectivity metrics. Third, conservation and restoration measures have been prioritized and statistically validated. Notwithstanding the recognized limits, the approach proved to be functional in the considered context and at the adopted level of detail. Therefore, it could give useful methodological hints for the requalification of transitional urban–rural areas and for the achievement of related sustainable development goals in metropolitan regions.
Collapse
|
6
|
Planning Peri-Urban Open Spaces: Methods and Tools for Interpretation and Classification. LAND 2021. [DOI: 10.3390/land10080802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Today, planning an urban–rural interface requires redefining the planner’s role and toolbox. Global challenges such as food security, climate change and population growth have become urgent issues to be addressed, especially for the implications in land use management. Urban–rural linkages, socio-economic interactions and ecological connectivity are the main issues on which the new urban agenda and sustainable development goals focus. Thus, urban and peri-urban agriculture (professional and not professional) in urban–rural interfaces has a crucial role in the maintenance and enhancement of landscape quality, urban green spaces and ecosystem services. The research presented in this article adopts a holistic approach, with a special focus on open spaces, in order to understand the complexity of peri-urban landscapes and to identify homogeneous units. It also defines map-based indices to characterize peri-urban landscape types and identify main functions to maintain and enhance. The method was applied to the peri-urban area of Turin (Italy), and maps of spatial and functional classification at the landscape unit level were generated, as well as a map of critical areas to improve. Despite some minor limitations, the method and tools proposed appear to have a range of applications in the context of global challenges and from a landscape perspective.
Collapse
|
7
|
Ecosystem Services for Planning: A Generic Recommendation or a Real Framework? Insights from a Literature Review. SUSTAINABILITY 2021. [DOI: 10.3390/su13126595] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recently, the concept of Ecosystem Services (ESs) has undergone a process of mainstreaming. It has been promoted in multiple policy documents and investigated in a growing number of studies addressing the functioning, assessment and management of ESs. Despite a general recommendation to integrate ESs into planning processes, this step remains highly critical yet far from complete. This paper explores the feasibility of the recommended uses of ESs for planning purposes by examining the needs of planners and decision-makers. A systematic literature review was conducted analysing different studies to overcome the limited adoption of ESs in planning verifying their operationalisation for planning practices. The paper classifies different purpose(s) assigned to ESs supporting the planning process. The results show that few experiments have adopted a step-by-step procedure facilitating the integration of ESs into planning and highlighting their added value in each phase of the planning process. In these cases, an ES-based Green Infrastructure has allowed for their integration into planning, also adopting a multi-scale spatial dimension. More practical experiments on how a planning process works are needed to operationalise the ESs concept for planning purposes, also reinforcing the role of the Strategic Environmental Assessment that is still marginal.
Collapse
|
8
|
Urban Green Infrastructure Inventory as a Key Prerequisite to Sustainable Cities in Ukraine under Extreme Heat Events. SUSTAINABILITY 2021. [DOI: 10.3390/su13052470] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The frequency of extreme heat effects has recently increased in European cities due to climate change. The problem appears to be critical in urban areas where manmade structures significantly alter the temperature balance, thus highlighting the importance of sustainable management and proper inventory of urban green zones. Based on this, the paper provides a case study on using a combination of open-access and low-cost urban greenery inventory methods that could be used by municipal governments and private land managers to estimate the contribution of urban trees to the mitigation of urban heat impacts. The research focuses on the urban greenery inventory of courtyards in high-rise residential districts of the city of Kyiv (Ukraine), aiming to estimate the adapting potential of urban vegetation against heatwaves. Visual and thermal satellite images of Kyiv enabled us to estimate how the density of buildings and greenery is distributed and analyze the surface temperature in residential districts. A UAV thermal imaging survey was made in four selected locations with varying vegetation coverage, followed by leaf-based field instrumental analysis of photosynthetic activity in selected city tree species at hot temperatures. In addition, 16 portable temperature and humidity sensors were installed in shaded and sunlight-exposed areas of the locations in focus to assess the microclimate formation impact of trees in a high-rise residential courtyard. The Ukrainian legislation on the management of green spaces in cities was reviewed to find out whether it promotes the shaping of comfortable microclimates in residential districts; follow-up recommendations were made on how to improve the applicable provisions.
Collapse
|
9
|
Nature-Based Solutions for Water Management in Peri-Urban Areas: Barriers and Lessons Learned from Implementation Experiences. SUSTAINABILITY 2020. [DOI: 10.3390/su12239799] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nature-based solutions (NBS) are defined by the European Commission as “actions that are inspired by, supported by, or copied from nature…” and that solve societal challenges and multiple benefits. As a result, NBS are often promoted as alternative responses that solve complex societal challenges such as watershed management, while delivering a systemic approach of multiple benefits for well-being, human health, and sustainable use of resources. Despite rising interest in NBS, further identification of experiences implementing NBS could advance our understanding of the operationalization of this comprehensive concept. For this purpose, we analyzed 35 peer-reviewed articles on implementation experiences of NBS for water management in peri-urban areas, on aspects related to (i) NBS problem–solution: water challenges, ecosystem services, scales, and types; (ii) NBS governance and management. From the insights of the analysis, this paper asks what lessons are learned, and which barriers are identified, from implementing NBS for water management in peri-urban areas? As a result, this study presents a detailed analysis of each aspect. We conclude by highlighting accountancy, monitoring, and communication as potential success factors for integration and development while diminishing the overall barrier of complexity, which leads to technical, institutional, economic, and social uncertainty.
Collapse
|
10
|
Honeck E, Sanguet A, Schlaepfer MA, Wyler N, Lehmann A. Methods for identifying green infrastructure. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03575-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
AbstractNature forms interdependent networks in a landscape, which is key to the survival of species and the maintenance of genetic diversity. Nature provides crucial socio-economic benefits to people, but they are typically undervalued in political decisions. This has led to the concept of Green Infrastructure (GI), which defines an interlinked network of (semi-)natural areas with high ecological values for wildlife and people, to be conserved and managed in priority to preserve biodiversity and ecosystem services. This relatively new concept has been used in different contexts, but with widely diverging interpretations. There is no apparent consensus in the scientific literature on the methodology to map and implement GI. This paper serves as an informed primer for researchers that are new to GI mapping understand the key principles and terminology for the needs of their own case-study, and as a framework for more advance researchers willing to contribute to the formalization of the concept. Through a literature review of articles on creating GI networks, we summarized and evaluated commonly used methods to identify and map GI. We provided key insights for the assessment of diversity, ecosystem services and landscape connectivity, the three ‘pillars’ on which GI identification is based according to its definition. Based on this literature review, we propose 5 theoretical levels toward a more complex, reliable and integrative approach to identify GI networks. We then discuss the applications and limits of such method and point out future challenges for GI identification and implementation.
Collapse
|