1
|
The Current Status and Lost Biogas Production Potential of Kazakhstan from Anaerobic Digestion of Livestock and Poultry Manure. ENERGIES 2022. [DOI: 10.3390/en15093270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Kazakhstan has large reserves of natural resources, including coal, oil, and natural gas. We hope to replace fossil fuels with renewable sources of energy—particularly renewable natural gas. Thus, Kazakhstan, like other countries, should cut its dependency on coal, oil, and natural gas so as to reach net zero carbon emissions by 2050. This study, given that Kazakhstan is an agricultural country with a large amount of organic matter, analyzes the potential of biogas production as a source of electricity and heat. Manure from livestock and poultry was chosen as a source of organic matter. The climate of Kazakhstan in most of its territory is sharply continental, with large temperature differences, which affect the process of anaerobic digestion. Consequently, the features of biogas production in cold regions were analyzed, and the calculation shows that the equivalent of 27,723,802 kWh of calorific energy could be obtained from the anaerobic digestion of livestock and poultry manure, while the annual energy consumption of Kazakhstan was 9423 billion kWh. Moreover, a policy is suggested to develop biogas production in Kazakhstan based on the agricultural land distribution among farmers.
Collapse
|
2
|
Muktar MS, Habte E, Teshome A, Assefa Y, Negawo AT, Lee KW, Zhang J, Jones CS. Insights Into the Genetic Architecture of Complex Traits in Napier Grass ( Cenchrus purpureus) and QTL Regions Governing Forage Biomass Yield, Water Use Efficiency and Feed Quality Traits. FRONTIERS IN PLANT SCIENCE 2022; 12:678862. [PMID: 35069609 PMCID: PMC8776657 DOI: 10.3389/fpls.2021.678862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 12/06/2021] [Indexed: 05/14/2023]
Abstract
Napier grass is the most important perennial tropical grass native to Sub-Saharan Africa and widely grown in tropical and subtropical regions around the world, primarily as a forage crop for animal feed, but with potential as an energy crop and in a wide range of other areas. Genomic resources have recently been developed for Napier grass that need to be deployed for genetic improvement and molecular dissection of important agro-morphological and feed quality traits. From a diverse set of Napier grass genotypes assembled from two independent collections, a subset of 84 genotypes (although a small population size, the genotypes were selected to best represent the genetic diversity of the collections) were selected and evaluated for 2 years in dry (DS) and wet (WS) seasons under three soil moisture conditions: moderate water stress in DS (DS-MWS); severe water stress in DS (DS-SWS) and, under rainfed (RF) conditions in WS (WS-RF). Data for agro-morphological and feed quality traits, adjusted for the spatial heterogeneity in the experimental blocks, were collected over a 2-year period from 2018 to 2020. A total of 135,706 molecular markers were filtered, after removing markers with missing values >10% and a minor allele frequency (MAF) <5%, from the high-density genome-wide markers generated previously using the genotyping by sequencing (GBS) method of the DArTseq platform. A genome-wide association study (GWAS), using two different mixed linear model algorithms implemented in the GAPIT R package, identified more than 35 QTL regions and markers associated with agronomic, morphological, and water-use efficiency traits. QTL regions governing purple pigmentation and feed quality traits were also identified. The identified markers will be useful in the genetic improvement of Napier grass through the application of marker-assisted selection and for further characterization and map-based cloning of the QTLs.
Collapse
Affiliation(s)
- Meki S. Muktar
- Feed and Forage Development, International Livestock Research Institute, Addis Ababa, Ethiopia
| | - Ermias Habte
- Feed and Forage Development, International Livestock Research Institute, Addis Ababa, Ethiopia
| | - Abel Teshome
- Feed and Forage Development, International Livestock Research Institute, Addis Ababa, Ethiopia
| | - Yilikal Assefa
- Feed and Forage Development, International Livestock Research Institute, Addis Ababa, Ethiopia
| | - Alemayehu T. Negawo
- Feed and Forage Development, International Livestock Research Institute, Addis Ababa, Ethiopia
| | - Ki-Won Lee
- Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan, South Korea
| | - Jiyu Zhang
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Chris S. Jones
- Feed and Forage Development, International Livestock Research Institute, Nairobi, Kenya
| |
Collapse
|
3
|
Net Energy Analysis and Techno-Economic Assessment of Co-Production of Bioethanol and Biogas from Cellulosic Biomass. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7040229] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Co-production is a process based on the biorefinery concept that maximizes the benefit of biomass by reusing residue from the production of one product to produce others. In this regard, biogas is one of the most researched second products for the production of ethanol from cellulosic biomass. However, operating this scheme requires additional investment in biogas processing equipment. This review compiles data from research studies on the co-production of bioethanol and biogas from lignocellulosic biomass to determine which is more worthwhile: leaving the residue or investing more to benefit from the second product. According to previous research, ethanol stillage can be converted to biogas via anaerobic digestion, increasing energy output by 2–3 fold. Techno-economic studies demonstrated that the co-production process reduces the minimum ethanol selling price to a level close to the market price of ethanol, implying the possibility of industrializing cellulosic ethanol production through this scheme.
Collapse
|
4
|
Aghmashhadi OY, Rocha-Meneses L, Bonturi N, Orupõld K, Asadpour G, Garmaroody ER, Zabihzadeh M, Kikas T. Effect of Ink and Pretreatment Conditions on Bioethanol and Biomethane Yields from Waste Banknote Paper. Polymers (Basel) 2021; 13:polym13020239. [PMID: 33445706 PMCID: PMC7828152 DOI: 10.3390/polym13020239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 11/16/2022] Open
Abstract
Waste banknote paper is a residue from the banking industry that cannot be recycled due to the presence of ink, microbial load and special coating that provides protection against humidity. As a result, waste banknote paper ends up being burned or buried, which brings environmental impacts, mainly caused by the presence of heavy metals in its composition. To minimize the environmental impacts that come from the disposal of waste banknote paper, this study proposes to produce value-added products (bioethanol and biogas) from waste banknote paper. For this, the effect of ink and pretreatment conditions on bioethanol and biomethane yields were analyzed. Waste banknote paper provided by the Central Bank of Iran was used. The raw material with ink (WPB) and without ink (WPD) was pretreated using sulfuric acid at different concentrations (1%, 2%, 3%, and 4%) and the nitrogen explosive decompression (NED) at different temperatures (150 °C, 170 °C, 190 °C, and 200 °C). The results show that the use of NED pretreatment in WPD resulted in the highest glucose concentration of all studies (13 ± 0.19 g/L). The acid pretreatment for WPB showed a correlation with the acid concentration. The highest ethanol concentration was obtained from the fermentation using WPD pretreated with NED (6.36 ± 0.72 g/L). The maximum methane yields varied between 136 ± 5 mol/kg TS (2% acid WPB) and 294 ± 4 mol/kg TS (3% acid WPD). Our results show that the presence of ink reduces bioethanol and biogas yields and that the chemical-free NED pretreatment is more advantageous for bioethanol and biogas production than the acid pretreatment method. Waste banknote paper without ink is a suitable feedstock for sustainable biorefinery processes.
Collapse
Affiliation(s)
- Omid Yazdani Aghmashhadi
- Department of Wood and Paper Engineering, Sari University of Agricultural Sciences and Natural Resources, Km 9 Farah Abad Road, Sari 66996-48181, Mazandaran Province, Iran; (G.A.); (M.Z.)
- Correspondence: (O.Y.A.); (L.R.-M.)
| | - Lisandra Rocha-Meneses
- Institute of Technology, Chair of Biosystems Engineering, Estonian University of Life Sciences, Kreutzwaldi 56, 51006 Tartu, Estonia;
- Correspondence: (O.Y.A.); (L.R.-M.)
| | - Nemailla Bonturi
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia;
| | - Kaja Orupõld
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 5, 51006 Tartu, Estonia;
| | - Ghasem Asadpour
- Department of Wood and Paper Engineering, Sari University of Agricultural Sciences and Natural Resources, Km 9 Farah Abad Road, Sari 66996-48181, Mazandaran Province, Iran; (G.A.); (M.Z.)
| | - Esmaeil Rasooly Garmaroody
- Department of Bio-refinery Engineering, Faculty of New Technologies Engineering, Shahid Beheshti University, Zirab P.O. Box 47815-168, Mazandaran, Iran;
| | - Majid Zabihzadeh
- Department of Wood and Paper Engineering, Sari University of Agricultural Sciences and Natural Resources, Km 9 Farah Abad Road, Sari 66996-48181, Mazandaran Province, Iran; (G.A.); (M.Z.)
| | - Timo Kikas
- Institute of Technology, Chair of Biosystems Engineering, Estonian University of Life Sciences, Kreutzwaldi 56, 51006 Tartu, Estonia;
| |
Collapse
|
5
|
A Sustainable Revolution: Let’s Go Sustainable to Get Our Globe Cleaner. SUSTAINABILITY 2020. [DOI: 10.3390/su12114387] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The concept of sustainability is a clear blue sea, a snowy mountain, a flowery meadow, in which there is resource sharing that allows us to satisfy human needs without damaging natural resources. The challenge is complex, and we hope to support the decarbonization of our society and mitigate climate changes. This Special Issue aims to outline different approaches in several sectors with a common point of view: seeing our world with a green perception and encouraging a sustainable revolution to provide a cleaner world.
Collapse
|
6
|
Evaluation of Napier Grass for Bioethanol Production through a Fermentation Process. Processes (Basel) 2020. [DOI: 10.3390/pr8050567] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Ethanol is one of the widely used liquid biofuels in the world. The move from sugar-based production into the second-generation, lignocellulosic-based production has been of interest due to an abundance of these non-edible raw materials. This study interested in the use of Napier grass (Pennisetum purpureum Schumach), a common fodder in tropical regions and is considered an energy crop, for ethanol production. In this study, we aim to evaluate the ethanol production potential from the grass and to suggest a production process based on the results obtained from the study. Pretreatments of the grass by alkali, dilute acid, and their combination prepared the grass for further hydrolysis by commercial cellulase (Cellic® CTec2). Separate hydrolysis and fermentation (SHF), and simultaneous saccharification and fermentation (SSF) techniques were investigated in ethanol production using Saccharomyces cerevisiae and Scheffersomyces shehatae, a xylose-fermenting yeast. Pretreating 15% w/v Napier grass with 1.99 M NaOH at 95.7 °C for 116 min was the best condition to prepare the grass for further enzymatic hydrolysis using the enzyme dosage of 40 Filter Paper Unit (FPU)/g for 117 h. Fermentation of enzymatic hydrolysate by S. cerevisiae via SHF resulted in the best ethanol production of 187.4 g/kg of Napier grass at 44.7 g/L ethanol concentration. The results indicated that Napier grass is a promising lignocellulosic raw material that could serve a fermentation with high ethanol concentration.
Collapse
|