1
|
Kamińska A, Sreńscek-Nazzal J, Wróblewska A, Serafin J, Gajewska S, Michalkiewicz B. Characterization and catalytic activity of Co/Mo-modified activated carbons derived from orange peels in limonene oxidation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:248-265. [PMID: 39688760 DOI: 10.1007/s11356-024-35796-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 12/12/2024] [Indexed: 12/18/2024]
Abstract
The possibility of using orange peels for the preparation of porous activated carbons by the chemical activation with H3PO4 and the application of the obtained carbonaceous materials as the metal catalyst supports was investigated. Activated carbon and carbon-metal materials were used as the limonene oxidation catalysts. The materials were characterized by the following instrumental methods: the sorption of N2 at-196 °C, XRD (X-ray diffraction), FTIR (Fourier transform infrared spectroscopy) and SEM (Scanning Electron Microscope), XPS (The X-ray photoelectron spectroscopy). XRF (X-ray Fluorescence) analyses were applied to determine the elemental (Co, Mo) content in the studied samples activated carbons. The activity of the obtained catalysts was tested in the oxidation of limonene to limonene oxide (the main product), carveol, carvone and perillyl alcohol. Oxygen was used as the oxidant in the oxidation processes. The results presented in this work showed that by the modification of the activated carbon with metal compounds, i.e. cobalt and molybdenum, it is possible to obtain more active catalysts for limonene oxidation compared to activated carbon not enriched with these metal compounds. The molybdenum catalyst (AC_OP_Mo) proved to be the most active catalyst. It allowed to obtain the high selectivity of limonene oxide (37 mol%) at the high conversion of limonene (58 mol%).
Collapse
Affiliation(s)
- Adrianna Kamińska
- Department of Catalytic and Sorbent Materials Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065, Szczecin, Poland
| | - Joanna Sreńscek-Nazzal
- Department of Catalytic and Sorbent Materials Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065, Szczecin, Poland
| | - Agnieszka Wróblewska
- Department of Catalytic and Sorbent Materials Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065, Szczecin, Poland
| | - Jarosław Serafin
- Department of Inorganic and Organic Chemistry, University of Barcelona, Martí I Franquès, 1-11, 08028, Barcelona, Spain.
| | - Sylwia Gajewska
- Department of Catalytic and Sorbent Materials Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065, Szczecin, Poland
| | - Beata Michalkiewicz
- Department of Catalytic and Sorbent Materials Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065, Szczecin, Poland
| |
Collapse
|
2
|
Pal P, Singh AK, Srivastava RK, Rathore SS, Sahoo UK, Subudhi S, Sarangi PK, Prus P. Circular Bioeconomy in Action: Transforming Food Wastes into Renewable Food Resources. Foods 2024; 13:3007. [PMID: 39335935 PMCID: PMC11431570 DOI: 10.3390/foods13183007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
The growing challenge of food waste management presents a critical opportunity for advancing the circular bioeconomy, aiming to transform waste into valuable resources. This paper explores innovative strategies for converting food wastes into renewable food resources, emphasizing the integration of sustainable technologies and zero-waste principles. The main objective is to demonstrate how these approaches can contribute to a more sustainable food system by reducing environmental impacts and enhancing resource efficiency. Novel contributions of this study include the development of bioproducts from various food waste streams, highlighting the potential of underutilized resources like bread and jackfruit waste. Through case studies and experimental findings, the paper illustrates the successful application of green techniques, such as microbial fermentation and bioprocessing, in valorizing food wastes. The implications of this research extend to policy frameworks, encouraging the adoption of circular bioeconomy models that not only address waste management challenges but also foster economic growth and sustainability. These findings underscore the potential for food waste to serve as a cornerstone in the transition to a circular, regenerative economy.
Collapse
Affiliation(s)
- Priti Pal
- Shri Ramswaroop Memorial College of Engineering & Management, Tewariganj, Faizabad Road, Lucknow 226028, India;
| | - Akhilesh Kumar Singh
- Department of Biotechnology, School of Life Sciences, Mahatma Gandhi Central University, Motihari 845401, India; (A.K.S.); (S.S.R.)
| | - Rajesh Kumar Srivastava
- Department of Biotechnology, GIT, Gandhi Institute of Technology and Management (GITAM), Visakhapatnam 530045, India;
| | - Saurabh Singh Rathore
- Department of Biotechnology, School of Life Sciences, Mahatma Gandhi Central University, Motihari 845401, India; (A.K.S.); (S.S.R.)
| | | | - Sanjukta Subudhi
- Advanced Biofuels Program, The Energy and Resources Institute, Darbari Seth Block, Habitat Place, Lodhi Road, New Delhi 110003, India;
| | | | - Piotr Prus
- Department of Agronomy, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, Al. prof. S. Kaliskiego 7, 85-796 Bydgoszcz, Poland
| |
Collapse
|
3
|
Sustainable Production of Stiff and Crystalline Bacterial Cellulose from Orange Peel Extract. SUSTAINABILITY 2022. [DOI: 10.3390/su14042247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this work, a potentially economic and environmentally friendly method for the synthesis of bacterial cellulose (BC) by Gluconacetobacter xylinus from a biomass containing orange peel extract was evaluated. Orange peel extract was used as a culture medium without any hydrolysis treatment, thus speeding up the synthesis procedure. The efficacy of orange peel as a carbon source was compared with that of sucrose. The orange peel extract formed thicker cellulose gels than those formed using sucrose. X-ray diffraction (XRD) revealed both a high crystallinity index and crystallite size of BC nanofibers in samples obtained from orange peel (BC_Orange). Field emission scanning electron microscopy (FE-SEM) revealed a highly densely packed nanofibrous structure (50 nm in diameter). BC_Orange presented a two-fold increase in water holding capacity (WHC), and dynamic mechanical analysis (DMA) showed a 44% increase in storage modulus compared to sucrose derived BC. These results showed that the naturally available carbon sources derived from orange peel extract can be effectively used for BC production. The orange-based culture medium can be considered a profitable alternative to the generation of high-value products in a virtuous circular economy model.
Collapse
|
4
|
Valorization of Albedo Orange Peel Waste to Develop Electrode Materials in Supercapacitors for the Electric Industry. J CHEM-NY 2021. [DOI: 10.1155/2021/3022815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This work proposes the use of albedo of orange peel in generation of carbon for applications in supercapacitors. For this, a comparison of compositional and electrochemical properties present in the carbons obtained of albedo, flavedo, and the complete orange peel was carried out. The morphology and composition of carbons obtained were analyzed by Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive X-ray (EDX), X-Ray Diffraction (XRD), and Fourier-transform infrared spectroscopy (FT-IR). The synthetized carbons were not subjected to the activation process by chemical compounds to relate only the properties of orange peel parts with their electrochemical behaviour. All samples were tested by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The carbon obtained of albedo presented a superior specific capacitance (210 F/g) of the rest samples. The value of albedo-based carbon capacitance is comparable with works presented in the literature that used a whole orange peel with chemical activators. In this way, it is possible to obtain large capacitances using only a part of orange peel (albedo). Thus, the importance of this study is that the albedo can be proposed as a material applied to electrodes for supercapacitors while the flavedo can be used in food industry or for oil extraction.
Collapse
|
5
|
Kamińska A, Miądlicki P, Kiełbasa K, Kujbida M, Sreńscek-Nazzal J, Wróbel RJ, Wróblewska A. Activated Carbons Obtained from Orange Peels, Coffee Grounds, and Sunflower Husks-Comparison of Physicochemical Properties and Activity in the Alpha-Pinene Isomerization Process. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7448. [PMID: 34885604 PMCID: PMC8659265 DOI: 10.3390/ma14237448] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 11/24/2022]
Abstract
This work presents studies on the preparation of porous carbon materials from waste biomass in the form of orange peels, coffee grounds, and sunflower seed husks. The preparation of activated carbons from these three waste materials involved activation with KOH followed by carbonization at 800 °C in an N2 atmosphere. This way of obtaining the activated carbons is very simple and requires the application of only two reactants. Thus, this method is cheap, and it does not generate much chemical waste. The obtained activated carbons were characterized by XRD, SEM, XPS, and XRF methods. Moreover, the textural properties, acidity, and catalytic activity of these materials were descried. During catalytic tests carried out in the alpha-pinene isomerization process (the use of the activated carbons thus obtained in the process of alpha-pinene isomerization has not been described so far), the most active were activated carbons obtained from coffee grounds and orange peels. Generally, the catalytic activity of the obtained materials depended on the pore size, and the most active activated carbons had more pores with sizes of 0.7-1.0 and 1.1-1.4 nm. Moreover, the presence of potassium and chlorine ions in the pores may also be of key importance for the alpha-pinene isomerization process. On the other hand, the acidity of the surface of the tested active carbons did not affect their catalytic activity. The most favorable conditions for carrying out the alpha-pinene isomerization process were the same for the three tested activated carbons: temperature 160 °C, amount of the catalyst 5 wt.%, and reaction time 3 h. Kinetic studies were also carried out for the three tested catalysts. These studies showed that the isomerization over activated carbons from orange peels, coffee grounds, and sunflower seed husks is a first-order reaction.
Collapse
Affiliation(s)
| | | | | | | | - Joanna Sreńscek-Nazzal
- Department of Catalytic and Sorbent Materials Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland; (A.K.); (P.M.); (K.K.); (M.K.); (R.J.W.)
| | | | - Agnieszka Wróblewska
- Department of Catalytic and Sorbent Materials Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland; (A.K.); (P.M.); (K.K.); (M.K.); (R.J.W.)
| |
Collapse
|
6
|
Mohsin A, Hussain MH, Zaman WQ, Mohsin MZ, Zhang J, Liu Z, Tian X, Salim-Ur-Rehman, Khan IM, Niazi S, Zhuang Y, Guo M. Advances in sustainable approaches utilizing orange peel waste to produce highly value-added bioproducts. Crit Rev Biotechnol 2021; 42:1284-1303. [PMID: 34856847 DOI: 10.1080/07388551.2021.2002805] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Orange peel waste (OPW), a discarded part of orange fruit, is a rich source of essential constituents that can be transformed into highly value-added bioproducts. OPW is being generated in million tonnes globally and returns to the environment without complete benefit. Thus, a high volume of annually produced OPW in the industry requires effective valorization. In this regard, limited data is available that summarizes the broader spectrum for the sustainable fate of OPW to produce value-added bioproducts. The main objective of this treatise is to explore the sustainable production of bioproducts from OPW. Therefore, this review covers all the aspects of OPW, from its production to complete valorization. The review encompasses the extraction technologies employed for extracting different valuable bioactive compounds, such as: essential oil (EO), pectin, and carotenoids, from OPW. Furthermore, the suitability of bioconversion technologies (digestion/fermentation) in transforming OPW to other useful bioproducts, such as: biochemicals (lactic acid and succinic acid), biopolysaccharides (xanthan and curdlan gum), and bioenergy (biomethane and bioethanol) is discussed. Also, it includes the concept of OPW-based biorefineries and their development that shall play a definite role in future to cover demands for: food, chemicals, materials, fuels, power, and heat. Lastly, this review focuses on OPW-supplemented functional food products such as: beverages, yogurts, and extruded products. In conclusion, insights provided in this review maximize the potential of OPW for commercial purposes, leading to a safe, and waste-free environment.
Collapse
Affiliation(s)
- Ali Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Muhammad Hammad Hussain
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Waqas Qamar Zaman
- Institute of Environment Science and Engineering, School of Civil and Environment Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | - Muhammad Zubair Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Junhong Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Zebo Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Xiwei Tian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Salim-Ur-Rehman
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Imran Mehmood Khan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, P.R. China
| | - Sobia Niazi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, P.R. China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| |
Collapse
|