Borges D, Nascimento MCV. COVID-19 ICU demand forecasting: A two-stage Prophet-LSTM approach.
Appl Soft Comput 2022;
125:109181. [PMID:
35755299 PMCID:
PMC9212961 DOI:
10.1016/j.asoc.2022.109181]
[Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/04/2022] [Accepted: 06/08/2022] [Indexed: 11/05/2022]
Abstract
Recent literature has revealed a growing interest in methods for anticipating the demand for medical items and personnel at hospital, especially during turbulent scenarios such as the COVID-19 pandemic. In times like those, new variables appear and affect the once known demand behavior. This paper investigates the hypothesis that the combined Prophet-LSTM method results in more accurate forecastings for COVID-19 hospital Intensive Care Units (ICUs) demand than both standalone models, Prophet and LSTM (Long Short-Term Memory Neural Network). We also compare the model to well-established demand forecasting benchmarks. The model is tested to a representative Brazilian municipality that serves as a medical reference to other cities within its region. In addition to traditional time series components, such as trend and seasonality, other variables such as the current number of daily COVID-19 cases, vaccination rates, non-pharmaceutical interventions, social isolation index, and regional hospital beds occupation are also used to explain the variations in COVID-19 hospital ICU demand. Results indicate that the proposed method produced Mean Average Errors (MAE) from 13% to 45% lower than well established statistical and machine learning forecasting models, including the standalone models.
Collapse