1
|
Bertolazi AA, Passamani LZ, de Souza SB, Rodrigues WP, Campostrini E, Pinto VB, Silveira V, de Rezende CE, Cruz C, Cardoso EJBN, Ramos AC. Comparative effects of Serendipita indica and a mix of arbuscular mycorrhizal fungi on the growth, photosynthetic capacity, and proteomics of Schinus terebinthifolius Raddi. PLANTA 2025; 261:34. [PMID: 39808192 DOI: 10.1007/s00425-025-04608-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
MAIN CONCLUSION Both, Serendipita indica and AMF, show promise as sustainable biofertilizers for reforestation, improving nutrient uptake and stress tolerance, despite contrasting effects on photosynthetic capacity and biomass allocation. Reclaiming degraded areas is essential for biodiversity conservation and enhancing ecosystem services enhancement, especially when using native species. This study investigated Schinus terebinthifolius Raddi, a native Brazilian species, and its compatibility with plant growth-promoting microorganisms (PGPM), including an endophytic fungus (Serendipita indica) and a consortium of arbuscular mycorrhizal fungi (AMF), to identify effective strategies for reforestation in nutrient-poor environments. We observed growth stimulation by both PGPMs; however, S. indica primarily enhanced root weight, whereas AMF improved shoot weight. S. indica's positive effects on root systems could be attributed to increased auxin levels and altered root architecture, which are critical for seedling establishment in reforestation programs. In terms of nutritional status, both treatments increased the content of most nutrients, with higher micronutrient contents in the shoots and higher macronutrient content in roots of inoculated plants. Despite AMF's role in enhancing photosynthesis, plants inoculated with these fungi showed reduced photosynthetic capacity traits, possibly due to lower leaf nitrogen content. The proteomic analysis of Schinus terebinthifolius leaf extracts revealed that, despite the upregulation of several proteins associated with the photosynthetic apparatus in response to S. indica treatment, no enhancement in photosynthetic capacity was observed. We also found several proteins related to oxidative stress in plants inoculated with both fungi, indicating a greater tolerance to adverse environmental conditions. These findings underscore the potential of both, S. indica and AMF, as sustainable alternatives to chemical fertilizers in reforestation efforts, enhancing seedling quality and survival in nutrient-poor soils.
Collapse
Affiliation(s)
- Amanda A Bertolazi
- Laboratory of Environmental Microbiology and Biotechnology, Universidade Vila Velha (UVV), Vila Velha, ES, Brazil
| | - Lucas Z Passamani
- FAESA University Center, Av. Vitória, 2220, Vitória, ES, 29053-360, Brazil
| | - Sávio B de Souza
- Laboratory of Environmental Microbiology and Biotechnology, Universidade Vila Velha (UVV), Vila Velha, ES, Brazil
| | - Weverton P Rodrigues
- Center of Agrarian Sciences, CCA, Universidade Estadual da Região Tocantina do Maranhão (UEMASUL), Avenida Agrária, 100, Imperatriz, Estreito, Maranhão, 65900-001, Brazil
| | - Eliemar Campostrini
- Laboratory of Plant Physiology, CCTA, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| | - Vitor B Pinto
- Laboratory of Biotechnology, Integrative Biology Unit, CBB, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Vanildo Silveira
- Laboratory of Biotechnology, Integrative Biology Unit, CBB, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Carlos E de Rezende
- Laboratory of Environmental Sciences, CBB, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Cristina Cruz
- Faculty of Sciences, Center for Ecology, Evolution and Environmental Changes (Ce3C), Universidade de Lisboa, Campo Grande, Portugal
| | - Elke J B N Cardoso
- Laboratory of Soil Microbiology, Soil Science Department, 'Luiz de Queiroz' College of Agriculture, University of São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Alessandro Coutinho Ramos
- Laboratory of Environmental Microbiology and Biotechnology, Universidade Vila Velha (UVV), Vila Velha, ES, Brazil.
| |
Collapse
|
2
|
Crișan I, Ona A, Vârban D, Muntean L, Vârban R, Stoie A, Mihăiescu T, Morea A. Current Trends for Lavender ( Lavandula angustifolia Mill.) Crops and Products with Emphasis on Essential Oil Quality. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12020357. [PMID: 36679071 PMCID: PMC9861439 DOI: 10.3390/plants12020357] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 05/24/2023]
Abstract
Lavender is in the research spotlight due to its increasing economic importance, while market demand is expected to continue to grow. Among the hundreds of essential-oil-bearing plants, Lavandula angustifolia Mill. remains one of the most valuable. This paper explores the lavender chain timeline from crop to products, examining the expanding knowledge on the characteristics, phytochemical profile and functional potential of lavender that could lead to new products and uses. Lavender crops can be expanded without competing for productive land, instead using marginal, contaminated or unproductive land. A novel cultivation trend proposes leveraging agri-background biodiversity, arbuscular mycorrhiza and the natural enemies of pests for healthy crops. Together with breeding efforts targeting highly performant genotypes with complex volatile profiles coupled with resistance to specific biotic (particularly Phytoplasma) and abiotic (salt, heavy metals) stressors, industry could have a steady supply of high-quality raw material. Besides the expansion of the uses of essential oil in cosmetics, pharmaceuticals, food and environmental and agri-applications, novel channels have appeared for the use of the solid by-product, which is rich in polyphenols and polysaccharides; these channels have the potential to create additional streams of value. The stabilization and optimization of techno-functional delivery systems through the encapsulation of essential oil can extend shelf-life and enhance biological activity efficiency.
Collapse
Affiliation(s)
- Ioana Crișan
- Department of Botany, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Mănăștur Street No. 3-5, 400372 Cluj-Napoca, Romania
| | - Andreea Ona
- Department of Genetics and Plant Breeding, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Mănăștur Street No. 3-5, 400372 Cluj-Napoca, Romania
| | - Dan Vârban
- Department of Crop Technologies, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Mănăștur Street No. 3-5, 400372 Cluj-Napoca, Romania
| | - Leon Muntean
- Department of Genetics and Plant Breeding, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Mănăștur Street No. 3-5, 400372 Cluj-Napoca, Romania
| | - Rodica Vârban
- Department of Botany, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Mănăștur Street No. 3-5, 400372 Cluj-Napoca, Romania
| | - Andrei Stoie
- Department of Botany, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Mănăștur Street No. 3-5, 400372 Cluj-Napoca, Romania
| | - Tania Mihăiescu
- Department of Engineering and Environmental Protection, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Mănăștur Street No. 3-5, 400372 Cluj-Napoca, Romania
| | - Adriana Morea
- Department of Agritourism and Processing of Agricultural Products, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Mănăștur Street No. 3-5, 400372 Cluj-Napoca, Romania
| |
Collapse
|
3
|
Deja-Sikora E, Werner K, Hrynkiewicz K. AMF species do matter: Rhizophagus irregularis and Funneliformis mosseae affect healthy and PVY-infected Solanum tuberosum L. in a different way. Front Microbiol 2023; 14:1127278. [PMID: 37138600 PMCID: PMC10150075 DOI: 10.3389/fmicb.2023.1127278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/14/2023] [Indexed: 05/05/2023] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) were documented to positively influence plant growth and yield, which is extremely important for the production of many crops including potato. However, the nature of the interaction between arbuscular mycorrhiza and plant virus that share the same host is not well characterized. In this study, we examined the effect of different AMF, Rhizophagus irregularis and Funneliformis mosseae, on healthy and potato virus Y (PVY)-infected Solanum tuberosum L. The analyses conducted included the measurement of potato growth parameters, oxidative stress indicators, and photosynthetic capacity. Additionally, we evaluated both the development of AMF in plant roots and the virus level in mycorrhizal plants. We found that two AMF species colonized plant roots to varying degrees (ca. 38% for R. irregularis vs. 20% for F. mosseae). Rhizophagus irregularis had a more positive effect on potato growth parameters, causing a significant increase in the total fresh and dry weight of tubers, along with virus-challenged plants. Furthermore, this species lowered hydrogen peroxide levels in PVY-infected leaves and positively modulated the levels of nonenzymatic antioxidants, i.e., ascorbate and glutathione in leaves and roots. Finally, both fungal species contributed to reduced lipid peroxidation and alleviation of virus-induced oxidative damage in plant organs. We also confirmed an indirect interaction between AMF and PVY inhabiting the same host. The two AMF species seemed to have different abilities to colonize the roots of virus-infected hosts, as R. irregularis showed a stronger drop in mycorrhizal development in the presence of PVY. At the same time, arbuscular mycorrhiza exerted an effect on virus multiplication, causing increased PVY accumulation in plant leaves and a decreased concentration of virus in roots. In conclusion, the effect of AMF-plant interactions may differ depending on the genotypes of both symbiotic partners. Additionally, indirect AMF-PVY interactions occur in host plants, diminishing the establishment of arbuscular mycorrhiza while changing the distribution of viral particles in plants.
Collapse
|